Abstract:
It is an object to provide a method for producing magnesium oxide by which magnesium oxide being high in purity and low in impurity content can be produced simply and efficiently from a sulfuric acid solution containing magnesium and calcium such as waste water. In the present invention, calcium is precipitated as calcium sulfate and separated by concentrating a sulfuric acid solution containing magnesium and calcium, and magnesium is precipitated as magnesium sulfate and separated by further concentrating the solution resulting from the separation of calcium. The separated magnesium sulfate is roasted together with a reductant, so that magnesium oxide and sulfur dioxide are obtained. The resulting magnesium oxide is washed to produce magnesium oxide with high purity.
Abstract:
Provided is a copper powder which can be suitably utilized in applications such as an electrically conductive paste and an electromagnetic wave shield while securing excellent electrical conductivity by increasing the number of contact points between the copper powders. A copper powder 1 according to the present invention has a dendritic shape having a linearly grown main stem 2 and a plurality of branches 3 separated from the main stem 2, the main stem 2 and the branches 3 are constituted as flat plate-shaped copper particles having a cross-sectional average thickness of from 0.02 µm to 5.0 µm to be determined by scanning electron microscopic SEM observation gather, the average particle diameter D50 of the copper powder 1 is from 1.0 µm to 100 µm, and the maximum height in the vertical direction with respect to the flat plate-shaped surface of the copper particles is 1/10 or less with respect to the maximum length in the horizontal direction of the flat plate-shaped surface of the copper particles.
Abstract:
Provided is a copper powder that has an increased number of points of contact between copper powder particles, that ensures excellent conductivity, and that can be suitably used in a conductive paste, an electromagnetic wave shield, or the like. The copper powder is configured from flat plate-shaped copper particles 1 that form a dendritic shape having a linearly grown main trunk and a plurality of branches branching from the main trunk. The main trunk and the branches have an average cross-sectional thickness of more than 1.0 µm but no more than 5.0 µm. The copper powder has a flat plate shape that is configured from a layered structure of one layer or a plurality of stacked layers. The average particle size (D50) is 1.0-100 µm.
Abstract:
To provide a copper powder exhibiting a high electric conductivity suitable for a metallic filler used in an electrically conductive paste, a resin for electromagnetic shielding, an antistatic coating, etc., and having excellent uniform dispersibility required for forming a paste so as to inhibit an increase in viscosity due to flocculation. This copper powder 1 forms a branch shape having a plurality of branches through the conglomeration of copper particles 2. The copper particles 2 have a spheroidal shape, with diameters ranging from 0.2 µm-0.5 µm, inclusive, and lengths ranging from 0.5 µm-2.0 µm, inclusive. The average particle diameter (D50) of the copper powder 1 in which the spheroidal copper particles 2 have conglomerated is 5.0 µm-20 µm. By mixing this tree-branch-shaped copper powder 1 into a resin, it is possible to produce an electrically conductive paste, etc., exhibiting excellent electric conductivity, for example.
Abstract:
The present invention provides Li-containing slag which is obtained by melting a starting material such as waste lithium ion batteries that contain Li and Al, and which has a slag melting point that is effectively controlled to a specific temperature or less, while suppressing the addition amount of a flux, wherein Li is effectively concentrated by suppressing the amount of slag. The present invention provides Li-containing slag which is obtained by melting a starting material that contains waste lithium ion batteries which contain lithium (Li) and aluminum (Al), and which is characterized in that: relational expressions Al/Li
Abstract:
To provide a method capable of inexpensively producing a valuable metal. A method according to the present invention includes at least a preparation step of preparing a raw material containing Li, Mn, Al, and valuable metals; a reductive melting step of subjecting the raw material to a reductive melting treatment to obtain a reduced product containing an alloy containing valuable metals and a slag; and a slag separation step of separating the slag from the reduced product to recover the alloy, wherein in any one or both of the preparation step and the reductive melting step, a flux containing calcium (Ca) is added, a molar ratio (Li/Al ratio) of Li to Al in the slag obtained by the reductive melting treatment is 0.25 or more, a molar ratio (Ca/Al ratio) of Ca to Al in the slag is 0.30 or more, and a Mn amount in the slag is 5.0 mass% or more, and in the reductive melting treatment, an oxygen partial pressure in a melt obtained by melting the raw material is controlled to 10-14 or more and 10-11 or less.
Abstract:
The present invention provides a method by which a valuable metal is able to be recovered with a high recovery rate by effectively and efficiently separating impurities, in particular iron, from a starting material to be processed. A method for producing a valuable metal that contains cobalt (Co), the method comprising: a preparation step in which a starting material that contains at least iron (Fe) and a valuable metal is prepared; a melting step in which a melt is obtained by heating and melting the starting material, and the melt is subsequently formed into a molten material that contains an alloy and slag; and a slag separation step in which the slag is separated from the molten material, thereby recovering the alloy that contains the valuable metal. In the preparation step, the Fe/Co mass ratio in the starting material is controlled to 0.5 or less; and in the melting step, the Co content in the slag that is obtained by heating and melting the starting material is set to 1% by mass or less.
Abstract:
It is an object to provide a method for producing magnesium oxide by which magnesium oxide being high in purity and low in impurity content can be produced simply and efficiently from a sulfuric acid solution containing magnesium and calcium such as waste water. In the present invention, calcium is precipitated as calcium sulfate and separated by concentrating a sulfuric acid solution containing magnesium and calcium, and magnesium is precipitated as magnesium sulfate and separated by further concentrating the solution resulting from the separation of calcium. The separated magnesium sulfate is roasted together with a reductant, so that magnesium oxide and sulfur dioxide are obtained. The resulting magnesium oxide is washed to produce magnesium oxide with high purity.
Abstract:
Provided is a method for safely and efficiently recovering a valuable metal from a material including waste lithium ion batteries or the like. The present invention is for producing a valuable metal from a material including the valuable metal, the method comprising: a preparation step for preparing a material including at least Li, Al, and a valuable metal; a reduction and melting step for carrying out a reduction and melting process on the material to obtain a reduced product including a slag and an alloy containing a valuable metal; and a slag separation step for separating the slag from the reduced product to recover the alloy. In the preparation step and/or the reduction and melting step, a flux containing Ca is added to the material. In the reduction and melting step, the reduction and melting process is carried out such that the mass ratio of aluminum oxide / (aluminum oxide + calcium oxide + lithium oxide), in the generated slag, is set to 0.5-0.65, and the slag heating temperature is set to 1400-1600°C.
Abstract:
The present invention provides a method for producing a valuable metal from a starting material that contains waste lithium ion batteries, the method being capable of effectively obtaining a metal which has a reduced phosphorus content. The present invention provides a method for producing a valuable metal from a starting material that contains waste lithium ion batteries containing phosphorus, the method comprising: a melting step in which the starting material is melted, thereby obtaining a melt; and a slag separation step in which slag is separated from the melt and an alloy containing a valuable metal is recovered. According to the present invention, an alloy is recovered, while making it sure that the recovery ratio of cobalt from the starting material is from 95.0% to 99.6%, thereby suppressing the phosphorus content in the alloy to 0.1% by mass or less.