摘要:
A tuning fork gyroscope design where at least one proof mass is supported above a substrate. At least one drive electrode is also supported above the substrate adjacent the proof mass. Typically, the proof mass and the drive electrode include interleaved electrode fingers. A sense plate or shield electrode on the substrate beneath the proof mass extends completely under the extent of the electrode fingers of proof mass.
摘要:
A micromechanical tuning fork gyro having two center electrodes (9a, 9b). The two center electrodes are excited with bias potentials of opposite polarity. The oppositely biased center electrodes provide electrical symmetry across the gyroscope and thereby reduce charge transients and sensitivity to vertical translation. Currents injected directly into the proof masses (3a, 3b) are equal and opposite and thus cancel. Motor lift forces acting on the proof masses and interleaved electrodes equal, hence the proof masses move in pure translation, thereby reducing in-phase bias. Further, any pure translation normal to the plane of the gyroscope does not effect sense axis output signals.
摘要:
Micromachined, thermally insensitive silicon resonators are provided having accuracy equivalent or superior to that of quartz resonators, and are fabricated from a micromechanical, silicon-on-glass process. In one embodiment, such a resonator is realized using a tuning fork gyroscope (4). Radiation-hard precision voltage references (PVRs) are enabled using the silicon resonators. Thermal sensitivity is reduced relative to that of a silicon-on-silicon process oscillator, providing a thermal sensitivity comparable to that of a quartz oscillator. By employing a micromechanical device based upon a tuning fork gyroscope (4), resonators are made from either or both of the gyro drive and sense axes. A resonator constructed as an oscillator loop (8) whose resonant frequency is compared to a frequency standard provides a bias voltage as a reference voltage (Vref).
摘要:
Micromachined, thermally insensitive silicon resonators are provided having accuracy equivalent or superior to that of quartz resonators, and are fabricated from a micromechanical, silicon-on-glass process. In one embodiment, such a resonator is realized using a tuning fork gyroscope (4). Radiation-hard precision voltage references (PVRs) are enabled using the silicon resonators. Thermal sensitivity is reduced relative to that of a silicon-on-silicon process oscillator, providing a thermal sensitivity comparable to that of a quartz oscillator. By employing a micromechanical device based upon a tuning fork gyroscope (4), resonators are made from either or both of the gyro drive and sense axes. A resonator constructed as an oscillator loop (8) whose resonant frequency is compared to a frequency standard provides a bias voltage as a reference voltage (Vref).