摘要:
A method (10) of controlling optical signal power levelling in an optical communication network node configured to apply an optical attenuation, α, to a pass-through optical signal. The method comprises: a. performing the following steps i. to iii. until an attenuation variation value, Δα, is greater than a preselected attenuation variation threshold value (18), ΔαTH: i. measuring (12) an optical signal power of an optical signal; ii. calculating (14) a difference, ΔP, between the measured optical signal power and a target optical signal power; iii. calculating (16) a value for the attenuation variation, Δα, to be applied to the optical attenuation taking account of ΔP; b. obtaining (20) a current value of the optical attenuation, αn, and obtaining (22) a new optical attenuation value, αn+1, in dependence on the current value of the optical attenuation, a current value of the attenuation variation, Δαn, and at least an earlier value of the attenuation variation, Δαn−1; and c. generating (24) a control signal arranged to configure the node to apply the new optical attenuation value, αn+1.
摘要:
Apparatus for an optical communications network has optical paths for optical traffic, and optical ports, one of which is an unused output port. A security monitoring system has a blocking part coupled removably to the unused output port to occupy it to prevent unauthorized access. An optical detector can detect optical signals passing through the unused output port to the blocking part, and there is alarm circuitry configured to output an alarm signal based on the detecting of the optical signals. This monitoring can help make the node more secure from interference or from eavesdropping. By blocking the port, the monitoring can be independent of the type of signals on the optical paths. The system can be passive or active, and does not require a change in the installed node configuration and so can be added easily to existing infrastructure.