摘要:
There is provided a method and corresponding arrangement and units for radar detection in a wireless communication system operating in a spectrum shared with at least one radar system. The method basically comprises the steps of collecting (S1) measurement information related to radar sensing measurements by aggregating radar sensing measurements from multiple, geographically distributed radar sensing units forming a radar sensing network implemented in the wireless communication system, and processing (S2) the measurement information according to at least one radar sensing rule to generate a radar detection result. With this new and fundamental radar detection procedure in place, it may further be beneficial to take action(s) for radar protection and/or dynamic adjustment of radar detection functionalities.
摘要:
The present invention relates to the reuse of a control channel in a distributed cellular radio communication system. At least one physical channel, the so-called physical control channel, in the radio communication system is used for transferring logical control channels. According to the present invention, the physical uplink control channel can be reused with respect to logical control channels comprising an access request. The physical downlink control channel can be reused with respect to logical control channels comprising a message that access is granted to a mobile station or a message that someone requests contact with a mobile station. According to the invention, the physical uplink control channel and/or the physical downlink control channel is reused. This means that more connections per time unit may be established in the radio communication system.
摘要:
In a cellular communication system, a method and apparatus are provided for allocating a channel for use on a connection between a base station and a mobile station in a cell, without making measurements of downlink interference. Throughout the system, uplink and downlink power levels are regulated so that, within each cell, their sum changes by an amount whose magnitude is substantially equal to the magnitude of change in path gain between the mobile station and the base station in that cell, and which sum is opposite in sign to the amount of change in path gain. This power regulation scheme assures that there will be a strong correlation between system-wide measurements of uplink and downlink interferen ce. Therefore, with the power regulation scheme in place, each cell determines uplink carrier to interference (C/I) ratios for the free channels available for use in the cell and selects an acceptable free channel having a C/I value that is within a predetermined acceptable range. If uplink C/I on the acceptable free channel is greater than the uplink C/I value of a channel currently assigned to a connection, then an intra-cell handover is performed so that the connection will be reassigned to the acceptable free channel. This technique is useful for providing an adaptive channel allocation scheme to systems, such as analog cellular communications systems, in which downlink interference measurements cannot be made.
摘要:
In a cellular communication system, a method and apparatus are provided for allocating a channel for use on a connection between a base station and a mobile station in a cell, without making measurements of downlink interference. Throughout the system, uplink and downlink power levels are regulated so that, within each cell, their sum changes by an amount whose magnitude is substantially equal to the magnitude of change in path gain between the mobile station and the base station in that cell, and which sum is opposite in sign to the amount of change in path gain. This power regulation scheme assures that there will be a strong correlation between system-wide measurements of uplink and downlink interferen ce. Therefore, with the power regulation scheme in place, each cell determines uplink carrier to interference (C/I) ratios for the free channels available for use in the cell and selects an acceptable free channel having a C/I value that is within a predetermined acceptable range. If uplink C/I on the acceptable free channel is greater than the uplink C/I value of a channel currently assigned to a connection, then an intra-cell handover is performed so that the connection will be reassigned to the acceptable free channel. This technique is useful for providing an adaptive channel allocation scheme to systems, such as analog cellular communications systems, in which downlink interference measurements cannot be made.