摘要:
The present invention provides a process comprising admixing a thioether with about 1.05 to about 1.6 molar equivalents of an active chlorine-containing oxidant, preferably sodium hypochlorite, and about 2.5 to about 5.0 molar equivalents of an alkali metal base; and recovering a sulfoxide that is preferably pantoprazole, lansoprazole, omeprazole, or rabeprazole. The process may further comprise contacting the sulfoxide with a source of sodium ions, preferably sodium hydroxide, to produce the sodium salt of the sulfoxide. The invention also relates to novel chlorinated derivatives of pantoprazole including 5(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl)-chloromethyl]sulfinyl]-1H- benzimidazole and 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl)chlorohydroxymethyl] sulfinyl]-1H-benzimidazole and processes for making them. The invention also relates to processes of quantifying and identifying a compound other than pantoprazole in a mixture of pantoprazole and at least one other compound.
摘要:
The present invention relates to a polymorphic form (Form I) of pantoprazole and a processes of making same. Form I has a PXRD pattern with characteristic peaks at 6.6, 13.2, 13.7, 15.7, 23.1, and 23.4 ± 0.2 °20 and a FTIR spectrum with characteristic bands at 1385, 1264, 1244, 1180, and 1027 at cm-1. The process of making Form I includes crystallizing pantaoprazole or forming slurry from amorphous pantoprazole. The present invention also relates to another polymorphic form (Form II) of pantoprazole and a process of making the same. Form II has a PXRD pattern with characteristic peaks at 5.8, 7.5, 9.3, 15.0, 22.0, and 22.6 ± 0.2 °20 and a FTIR spectrum with characteristic bands at 3195, 1196, and 1584 at cm-1. The process of making Form II includes forming a slurry from amorphous pantoprazole.
摘要:
The present invention is directed to methods for the preparation of piperazine ring-containing compounds, particularly mirtazapine. According to the present invention, the mirtazapine intermediate 1-(3-carboxypyridyl-2)-4-methyl-2-phenyl-piperazine is made by hydrolyzing 1-(3-cyanopyridyl-2)-4-methyl-2-phenyl-piperazine with a base where the base is present in a ratio of up to about 12 moles of the base per one mole of 1-(3-cyanopyridyl-2)-4-methyl-2-phenyl-piperazine. The mirtazapine intermediate 1-(3-carboxypyridly-2)-4-methyl-2-phenyl-piperazine may be made by hydrolyzing 1-(3-cyanopyridyl-2)-4-methyl-2-phenyl-piperazine with potassium hydroxide at a temperature of at least about 130 °C. The method of the present invention also includes reacting 2-amino-3-hydroxymethyl pyridine with N-methyl-1-phenyl-2, 2'-iminodiethyl chloride to form 1-(3-hydroxymethylpyridyl-2)-4-methyl-2-phenyl piperazine, and adding sulfuric acid to the 1-(3-hydroxymethylpyridyl-2)-phenyl-4-methylpiperazine to form mirtazapine. The present invention also relates to new processes for recrystallization of mirtazapine form crude mirtazapine.