摘要:
A titanium alloy having high strength, fine grain size, and low cost and a method of manufacturing the same is disclosed. In particular, the inventive alloy offers a strength increase of about 100 MPa over Ti 6-4, with a comparable density and near equivalent ductility. The inventive alloy is particularly useful for a multitude of applications including components of aircraft engines. The Ti alloy comprises, in weight percent, about 6.0 to about 6.7 % aluminum, about 1.4 to about 2.0 % vanadium, about 1.4 to about 2.0 % molybdenum, about 0.20 to about 0.42 % silicon, about 0.17 to about 0.23 % oxygen, maximum about 0.24 % iron, maximum about 0.08 % carbon and balance titanium with incidental impurities.
摘要:
An alpha-beta titanium alloy comprising: Al at a concentration of from 4.7 wt.% to 6.0 wt.%; V at a concentration of from 6.5 wt.% to 8.0 wt.%; Si at a concentration of less than 1.0 wt.% ; O at a concentration of less than 1.0 wt.% ; and Ti and incidental impurities as a balance, wherein an Al/V ratio is from 0.65 to 0.8, the Al/V ratio being equal to the concentration of the Al divided by the concentration of the V in weight percent.
摘要:
An alpha-beta titanium alloy comprises Al at a concentration of from about 4.7 wt. % to about 6.0 wt. %; V at a concentration of from about 6.5 wt. % to about 8.0 wt. %; Si at a concentration of from about 0.15 wt. % to about 0.6 wt. %; Fe at a concentration of up to about 0.3 wt. %; O at a concentration of from about 0.15 wt. % to about 0.23 wt. %; and Ti and incidental impurities as a balance. The alpha-beta titanium alloy has an Al/V ratio of from about 0.65 to about 0.8, where the Al/V ratio is defined as the ratio of the concentration of Al to the concentration of V in the alloy, with each concentration being in weight percent (wt %).
摘要:
Titanium alloys formed into a part or component used in applications where a key design criterion is the energy absorbed during deformation of the part when exposed to impact, explosive blast, and/or other forms of shock loading is described. The titanium alloys generally comprise a titanium base with added amounts of aluminum, an isomorphous beta stabilizing element such as vanadium, a eutectoid beta stabilizing element such as silicon and iron, and incidental impurities. The titanium alloys exhibit up to 70% or more improvement in ductility and up to a 16% improvement in ballistic impact resistance over a Ti-6Al-4V alloy, as well as absorbing up to 50% more energy than the Ti-6Al-4V alloy in Charpy impact tests. A method of forming a part that incorporates the titanium alloys and uses a combination of recycled materials and new materials is also described.
摘要:
Titanium alloys formed into a part or component used in applications where a key design criterion is the energy absorbed during deformation of the part when exposed to impact, explosive blast, and/or other forms of shock loading is described. The titanium alloys generally comprise a titanium base with added amounts of aluminum, an isomorphous beta stabilizing element such as vanadium, a eutectoid beta stabilizing element such as silicon and iron, and incidental impurities. The titanium alloys exhibit up to 70% or more improvement in ductility and up to a 16% improvement in ballistic impact resistance over a Ti-6Al-4V alloy, as well as absorbing up to 50% more energy than the Ti-6Al-4V alloy in Charpy impact tests. A method of forming a part that incorporates the titanium alloys and uses a combination of recycled materials and new materials is also described.