Abstract:
A display body includes a first display part, which displays first information, and a second display part, which displays second information of a larger display size than the first information. The second display part includes the entire first display part as a part of the second display part. The first display part has a plasmon structure. The plasmon structure includes an interface between a metal layer and a dielectric layer, which transmits light, and is configured so that surface plasmons are excited in the interface to change irradiation light with which the interface is irradiated to transmitted light having a color different from that of the irradiation light. The first information is displayed with the transmitted light.
Abstract:
A display body includes lattice lines that are arranged along a plane of incidence on which light is incident. The lattice lines have properties for forming a bright image with diffracted light of the incident light in an oblique view in which the plane of incidence is viewed obliquely, and absorbing some of the incident light. The surface of each of the lattice lines includes dispersed fine step parts that are repetitive in the direction in which the lattice lines extend. The steps have an antireflection function and form a dark image in a front view directly facing the plane of incidence.
Abstract:
[MEANS FOR SOLVING PROBLEMS] A display according to the present invention is characterized in that it comprises a substrate with a light-transmitting property, a relief structure-forming layer disposed on at least one surface of the substrate and including a relief-structured region on a surface thereof opposite to its surface in contact with the substrate, a light-reflecting layer disposed on the surface of the relief structure-forming layer including the relief-structured region, and a printed layer formed on a surface of the substrate opposite to the surface on which the relief structure-forming layer is disposed, or between the relief structure-forming layer and the light-reflecting layer, or on a side of the light-reflecting layer opposite to its surface in contact with the relief structure-forming layer, and in that the relief-structured region is constituted by recessed or protruding portions arranged two-dimensionally, has low reflectivity and low diffusibility under a normal illumination condition, and exhibits a diffracted light-emitting property under a specific condition.
Abstract:
In a display, in a plan view facing an obverse surface of a reflection layer, first reflection surfaces are substantially square in shape, and a second reflection surface occupies gaps between adjacent ones of the first reflection surfaces. The distance between the first reflection surfaces and the second reflection surface in the thickness direction of a substrate has an extent that the obverse surface of the reflection layer emit colored light by interference between light reflected from the first reflection surfaces and light reflected from the second reflection surface. In a plan view facing the obverse surface (21s) of the reflection layer (21), more than one of the first reflection surfaces (21a) are located on each of a plurality of imaginary lines (Lv), on a straight line intersecting more than one of the imaginary lines (Lv), distances between adjacent ones of the imaginary lines (Lv) have different extents, the obverse surface (21s) of the reflection layer (21) includes a third display portion and a fourth display portion, the third display portion includes more than one of the first reflection surfaces (21a), the fourth display portion includes more than one of the first reflection surfaces (21a), more than one of the imaginary lines (Lv) are set in each of the third display portion and the fourth display portion, each imaginary line (Lv) is parallel to the other imaginary lines (Lv) in each of the third display portion and the fourth display portion, a direction in which the imaginary lines (Lv) extend in the third display portion is a third direction, a direction in which the imaginary lines (Lv) extend in the fourth display portion is a fourth direction, which differs from the third direction, and the third direction and the fourth direction form an angle of less than or equal to 10°.
Abstract:
A display includes an uneven structure having an uneven surface, which serves as an incident surface, on which light is incident. The uneven surface includes a section in which protrusion surfaces and depression surfaces alternate in an arrangement direction. Each protrusion surface has a shape of a strip extending in an extension direction perpendicular to the arrangement direction. Each protrusion surface tapers toward a top section in a thickness direction of the uneven structure. Each depression surface has a shape of a strip extending in the extension direction. Each depression surface tapers toward a bottom section in the thickness direction of the uneven structure. The protrusion surfaces and the depression surfaces are arranged at a period that limits reflection of light that is incident on the uneven surface in a front-view direction of the uneven surface and diffracts the light incident on the uneven surface to emit diffracted light in an oblique view direction of the uneven surface. The uneven structure has a property of absorbing light incident on the uneven structure.
Abstract:
An obverse surface of a reflection layer includes a plurality of first reflection surfaces, a plurality of second reflection surfaces, and a third reflection surface. The distance between the first reflection surfaces and the third reflection surface in the thickness direction of a substrate is a distance that is able the obverse surface of the reflection layer to emit light of a first color by interference between light reflected from the first reflection surfaces and light reflected from the third reflection surface. The distance between the second reflection surfaces and the third reflection surface in the thickness direction of the substrate is a distance that is able the obverse surface of the reflection layer to emit light of a second color, which differs from the first color, by interference between light reflected from the second reflection surfaces and light reflected from the third reflection surface. The obverse surface of the reflection layer emits light of a third color that includes the light of the first color and the light of the second color.
Abstract:
In display, in a plan view facing an obverse surface of a reflection layer, first reflection surfaces are substantially square in shape, and a second reflection surface occupies gaps between adjacent ones of the first reflection surfaces. The distance between the first reflection surfaces and the second reflection surface in the thickness direction of a substrate has an extent that the obverse surface of the reflection layer emit colored light by interference between light reflected from the first reflection surfaces and light reflected from the second reflection surface. In a plan view facing the obverse surface of the reflection layer, more than one of the first reflection surfaces are located on each of a plurality of imaginary lines. On a straight line intersecting more than one of the imaginary lines, distances between adjacent ones of the imaginary lines have different extents.
Abstract:
Characteristic visual effects can be achieved. A display (1) includes one or more relief structures (RS1). Each relief structure (RS1) includes a smooth first reflection surface (21) and a plurality of protrusions or recesses. Each top surface of the protrusions or each bottom of the recesses is a smooth second reflection surface parallel to the first reflection surface. Each relief structure (RS1) displays a mixed color as a structural color.