摘要:
The present invention relates to a nickel-based self-fluxing alloy, a glass manufacturing member, a mold, and a glass gob transporting member having an improved slipperiness against a glass gob. A nickel-based self-fluxing alloy used in a glass manufacturing member for transporting or molding glass with a viscosity of logη = 3 to 14.6, comprises: boron (B) in an amount of ranging from 0 percent to 1.5 percent by mass; hard particles; and silicon (Si). Preferably, the amount of boron (B) ranges from 0 percent to less than 1.0 percent by mass. Preferably, the hard particles contain at least one of a carbide, a nitrides, an oxide and a cermet. Preferably, the nickel-based self-fluxing alloy comprises at least one metal selected from Group 4, 5 and 6 elements in an amount of ranging from 0 percent to 30 percent by mass.
摘要:
To efficiently feed a molten resin to the resin holders. An intermittently feeding device 9 works to intermittently feed a transfer unit 3 ( Fig. 3 ) equipped with resin holders 20, and has a cam 32 supported by a motor 31 via support means. The cam 32 is rotated by the motor 31. A cam follower 33 of a moving block 34 meshes with the screw of the cam 32, and the moving block 34 moves along a support rail accompanying the turn of the cam 32. The motor 31 rotates at a constant speed, and the transfer unit 3 is fed intermittently depending on the shapes of the cam 32 and of the cam follower 33.
摘要:
A cup-type container obtained by compression-forming a thermoplastic resin and including at least a flange portion, a body portion and a bottom portion, wherein a ratio (L/D) of the height of the container to the diameter of the opening is not less than 1.0, and if the direction of height of a test piece cut out from the body portion of the container is denoted by x and the circumferential direction thereof by y, a half-value width P at a half peak of a Miller index at a diffraction angle 2 θ = 14.5° that represents the diffraction by the crystal plane (110), is in a range of 1.25 to 1.5 over the whole body portion in a peak intensity profile in the direction of height (x-direction) of a Debye's ring obtained by measuring the diffraction intensities by causing the X-rays to be incident on an x-y plane of the test piece at right angles thereto. The cup-type container is evenly oriented in the direction of height of the container and in the circumferential direction thereof, has an even strength in all directions and has excellent heat resistance. The invention, further, provides a method of forming the cup-type container.