摘要:
The method for vascular elastography comprises: i) obtaining a sequence of radio-frequency (RF) images including pre-tissue-motion and post-tissue-motion images in digital form of a vessel delimited by a vascular wall; the pre-tissue-motion and post-tissue-motion images being representative of first and second time-delayed configuration, of the whole vessel; ii) partitioning both the pre-tissue-motion and post-tissue-motion images within the vascular wall into corresponding data windows; approximating a trajectory between the pre- and post-tissue-motion for corresponding data windows; and using the trajectory for each data window to compute the full strain tensor in each data window, which allow determining the Von Mises coefficient. The method can be adapted for non-invasive vascular elastography (NIVE), for non-invasive vascular micro-elastography (MicroNIVE) on small vessels, and for endovascular elastography (EVE).
摘要:
The present invention generally relates to intravascular ultrasound (IVUS) image segmentation methods, and is more specifically concerned with an intravascular ultrasound image segmentation method for characterizing blood vessel vascular layers. The proposed image segmentation method for estimating boundaries of layers in a multi-layered vessel provides image data which represent a plurality of image elements of the multi-layered vessel. The method also determines a plurality of initial interfaces corresponding to regions of the image data to segment and further concurrently propagates the initial interfaces corresponding to the regions to segment. The method thereby allows to estimate the boundaries of the layers of the multi-layered vessel by propagating the initial interfaces using a fast marching model based on a probability function which describes at least one characteristic of the image elements.