摘要:
A system and method of displaying of multiple simultaneous views of a same region of a biological tissue sample. Logical instructions are executed by a processor to perform operations such as receiving a plurality of images of the biological tissue sample, converting the plurality of images to a common reference frame based on the individual metadata of each image, and arranging the plurality of images into a display pattern for simultaneous viewing of different aspects of the imaged biological tissue sample on a display screen. The plurality of images is produced by preprocessing images of the biological tissue sample. Each image shows a view mode of a same region of the biological tissue sample, and each image contains metadata that describe spatial orientation, such as the translation, rotation, and magnification, of the image to bring the plurality of images to a common view.
摘要:
Described herein are methods for co-expression analysis of multiple markers in a tissue sample comprising: computing a heat map of marker expression for each of a plurality of single marker channel images, wherein each of the plurality of single marker channel images comprise a single marker; identifying one or more candidate regions of interest in each heat map of marker expression; computing overlay masks comprising the identified one or more candidate regions of interest from each heat map of marker expression; determining one or more co-localized regions of interest from the overlay masks; mapping the one or more co-localized regions of interest to a same coordinate position in each of the plurality of single marker channel images; and estimating a number of cells in at least one of the determined one or more co-localized regions of interest in each of the plurality of single marker channel images.
摘要:
Described herein are methods for co-expression analysis of multiple markers in a tissue sample comprising: computing a heat map of marker expression for each of a plurality of single marker channel images, wherein each of the plurality of single marker channel images comprise a single marker; identifying one or more candidate regions of interest in each heat map of marker expression; computing overlay masks comprising the identified one or more candidate regions of interest from each heat map of marker expression; determining one or more co-localized regions of interest from the overlay masks; mapping the one or more co-localized regions of interest to a same coordinate position in each of the plurality of single marker channel images; and estimating a number of cells in at least one of the determined one or more co-localized regions of interest in each of the plurality of single marker channel images.
摘要:
Imaging systems, methods, and apparatuses for automatically identifying fields of view (FOVs) for regions in an image encompassing melanoma is disclosed. In embodiments and in further aspects of the present invention, a computer-implemented method is disclosed for a tumor region based immune score computation. The method, in accordance with the present invention, involves identifying regions, for example, tumor areas or regions around a tumor area, partitioning a whole slide image or portion of a whole slide image into multiple regions related to the tumor, selecting FOVs within each identified region, and computing a number of cells present in each FOV. An immune score and/or immune-related score is generated based on the cells counted in each FOV.
摘要:
The subject disclosure presents systems and computer-implemented methods for providing reliable risk stratification for early-stage cancer patients by predicting a recurrence risk of the patient and to categorize the patient into a high or low risk group. A series of slides depicting serial sections of cancerous tissue are automatically analyzed by a digital pathology system, a score for the sections is calculated, and a Cox proportional hazards regression model is used to stratify the patient into a low or high risk group. The Cox proportional hazards regression model may be used to determine a whole-slide scoring algorithm based on training data comprising survival data for a plurality of patients and their respective tissue sections. The coefficients may differ based on different types of image analysis operations applied to either whole-tumor regions or specified regions within a slide.
摘要:
Methods, systems, and apparatuses for detecting and describing heterogeneity in a cell sample are disclosed herein. A plurality of fields of view (FOV) are generated for one or more areas of interest (AOI) within an image of the cell sample are generated. Hyperspectral or multispectral data from each FOV is organized into an image stack containing one or more z-layers, with each z-layer containing intensity data for a single marker at each pixel in the FOV. A cluster analysis is applied to the image stacks, wherein the clustering algorithm groups pixels having a similar ratio of detectable marker intensity across layers of the z-axis, thereby generating a plurality of clusters having similar expression patterns.
摘要:
Embodiments disclosed herein are directed, among other things, to imaging systems, methods, and apparatuses for automatically identifying fields of view (FOVs) for regions in an image encompassing tumor are disclosed. In embodiments and in further aspects of the present invention, a computer-implemented method is disclosed for a tumor region based immune score computation. The method, in accordance with the present invention, involves identifying regions, for example, tumor areas or regions around a tumor area, partitioning a whole slide image or portion of a whole slide image into multiple regions related to the tumor, selecting FOVs within each identified region, and computing a number of cells present in each FOV. An immune score and/or immune-related score may be generated based on the cells counted in each FOV.