摘要:
Certain example embodiments of this invention relate to waveguide lasers (e.g., RF-excited waveguide lasers). Certain example embodiments of this invention provide combined waveguide cover and non-coupled top electrodes, and/or heat load balancing vacuum vessels including multiple (e.g., two or more) chambers. In certain example embodiments, RF energy may couple through the combined waveguide cover and non-coupled top electrode without significantly traversing the insulating carrier material via one or more cutouts or gaps formed in the RF coupling region of the top (or even a bottom) electrode. In certain example embodiments, first and second chambers of the vacuum vessel may be arranged so that heat generated in the discharge region flows away from the first and second chambers, thereby reducing thermally induced distortion of the optical component during laser operation. These techniques may be used alone or in various combinations.
摘要:
Certain example embodiments of this invention relate to waveguide lasers (e.g., RF-excited waveguide lasers). Certain example embodiments of this invention provide an optical mounting scheme for use with a waveguide laser. In certain example embodiments, a carrier including an optic holder may be provided. An optic may be mounted to the carrier via a face-sealing epoxy. An optic interface may be formed at least in part by the epoxy. The optic interface may be a thin layer of a substantially uniform thickness located between the carrier and optic face. The carrier and/or the optic holder of the carrier may be beveled proximate to where the optic interface is formed and, optionally, proximate to where the epoxy is applied. In certain example embodiments, the epoxy may be applied to only the optic's face and/or to the optic holder's face. In certain example embodiments, the waveguide laser may further comprise a vacuum vessel, and the carrier may be attached to the laser such that the optic and/or the optic interface attached to the carrier fit inside of the vessel.
摘要:
A drive system can be provided for a radio frequency excited gas laser. The gas laser can be a CO2 laser. The drive system can comprise a microprocessor and/or microcontroller operable to generate an amplifier drive signal and to gate the amplifier drive signal in accordance with a received command input. A RF power amplifier can be provided operable to receive the amplifier drive signal and to provide a laser drive signal proportional to the amplifier drive signal. The microprocessor and/or microcontroller can provide a network interface for receiving control inputs from and/or providing information regarding operation status to a remote terminal.