摘要:
A nuclear fission reactor comprising a core, a pool of coolant liquid, and a heat exchanger. The core comprises an array of hollow tubes which contain molten salts of fissile isotopes. The tube array is at least partly immersed in the pool of coolant liquid. The tube array comprises a critical region, where the density of the fissile isotopes during operation of the reactor is sufficient to cause a self-sustaining fission reaction. Heat transfer from the molten salts of fissile isotopes to the tubes is achieved by any one or more of natural convection of the molten salts, mechanical stirring of the molten salts, and oscillating fuel salt flow within the tubes. The molten salts of fissile isotopes are contained entirely within the tubes during operation of the reactor.
摘要:
A method of operating a nuclear fission reactor. The reactor comprises a reactor core, and a coolant tank containing coolant, the reactor core comprises an array of fuel assemblies. Each fuel assembly extends generally vertically and comprises one or more fuel tubes containing fissile fuel. The fuel tubes are immersed in the coolant. The method comprises monitoring and/or modelling fuel concentrations and/or fission rates in each of the fuel assemblies; and in dependence upon results of the monitoring and/or modelling, moving fuel assemblies horizontally within the array, without lifting the fuel tubes from the coolant, in order to control fission rates in the reactor core. A nuclear reactor implementing the method, and fuel assemblies for use in the method are also disclosed.
摘要:
According to a first aspect, there is provided a nuclear fission reactor. The nuclear fission reactor comprises a core, a tank surrounding the core, and a cooling system located outside the tank. The cooling system comprises one or more structures configured to absorb thermal radiation emitted from an outer wall of the tank. The structures are not substantially thermally coupled to the tank except by radiation. The cooling system further comprises a cold air inlet and a hot air outlet, positioned such that air flows from the cold air inlet to the hot air outlet over, around and/or through the one or more structures.
摘要:
A method of operating a nuclear fission reactor, the reactor comprising a reactor core, and a coolant tank containing coolant, the reactor core comprising an array of fuel assemblies arranged in generally parallel rows, each fuel assembly comprising one or more fuel tubes containing fissile fuel. For each row of the array, one or more spent fuel assemblies are removed from the array at a second end of the row, fuel assemblies are moved along the row from a first end to the second end; and one or more fuel assemblies are introduced to the array at the first end of the row. Each fuel assembly remains within a single row while the fuel assembly is within the array. At least the fuel-filled portions of the fuel tubes of each fuel assembly are immersed in the coolant while the fuel assembly is within the array.
摘要:
Use in a nuclear fission reactor of a sacrificial metal in a molten salt fuel containing actinide halides in order to maintain a predefined ratio of actinide trihalide to actinide tetrahalide without reducing actinide trihalide to actinide metal. A method of maintaining oxidation state of a molten salt containing actinide halides. The method comprises contacting the molten salt continuously with a sacrificial metal, the sacrificial metal being selected in order to maintain a predefined ratio of actinide trihalide to actinide tetrahalide without reducing actinide trihalide to actinide metal. A fuel tube containing a sacrificial metal is also described.
摘要:
A method of operating a nuclear fission reactor. The reactor comprises a reactor core, and a coolant tank containing coolant, the reactor core comprises an array of fuel assemblies. Each fuel assembly extends generally vertically and comprises one or more fuel tubes containing fissile fuel. The fuel tubes are immersed in the coolant. The method comprises monitoring and/or modelling fuel concentrations and/or fission rates in each of the fuel assemblies; and in dependence upon results of the monitoring and/or modelling, moving fuel assemblies horizontally within the array, without lifting the fuel tubes from the coolant, in order to control fission rates in the reactor core. A nuclear reactor implementing the method, and fuel assemblies for use in the method are also disclosed.