摘要:
A flow-restricted compound spray generating device 100 includes a spray face member 120B including at least one fluidic circuit oscillator defining geometry 132 including an outlet orifice 138 in the spray face member's central area configured to aim an oscillating spray 300 having a selected oscillating spray thickness distally along a spray axis 112. The spray face member 120B also includes a plurality of non-oscillating (e.g., laminar or jet) spray generating orifices 160B arrayed evenly around the spray face member's periphery to aim a plurality of non-oscillating laminar or jet sprays 302 distally along the spray axis 112 to provide a ring of high velocity streams arrayed around the central oscillating spray 300 to generate a compound spray 310 with an outflow which has a pleasing spray density with an apparent outflow thickness which is substantially equal to the spout orifice's diameter 320.
摘要:
A nozzle and spray dispenser for generating a uniform substantially flat fan spray pattern when spraying high viscosity fluids (i.e., oils, lotions, cleaning liquids, shear-thinning liquids and gels and similar Newtonian and non-Newtonian fluids having viscosities of 10-100 cP) is configured with an exit orifice 134 defining multiple lip segments 150A, 150B, 150C. Cup-shaped nozzle member 100 has a cylindrical side wall 102 surrounding a central longitudinal axis and has a circular closed end wall with at least one exit aperture passing through the end wall 112. At least one enhanced exit orifice structure is formed in an inner surface of the end wall, and includes two to five lip segments of selected width defining edges at the orifice 134, where each edge segment is defined at the distal edge of a separate and distinct interior wall segment 160A, 160B, 160C which has a selected wall convergence angle β.
摘要:
A spray dispenser is configured to generate a swirled output spray pattern 152 with improved rotating or angular velocity ω and smaller sprayed droplet size. Cup-shaped nozzle member 60 has a cylindrical side wall 62 surrounding a central longitudinal axis 64 and has a circular closed end wall 68 with at least one exit aperture 74 passing through the end wall. At least one enhanced swirl inducing mist generating structure is formed in an inner surface 70 of the end wall, and including a pair of opposed inwardly tapered offset power nozzle channels 80, 82 terminating in an interaction chamber 84 surrounding the exit aperture 74. The power nozzle channels generate opposing offset flows which are aimed to very efficiently generate a vortex of fluid which projects distally from the exit aperture as a swirled spray of small droplets 152 having a rapid angular velocity.
摘要:
A modular nozzle assembly for use with standard trigger sprayers 1, 300 has components which replace the standard nozzle cap 24, 320. A user selectable and user changeable fluidic plate or fluidic circuit member 152, 372 is configured to allow the user to configure a particular combination of components to create precise 2-D or 3-D spray pattern when spraying or dispensing a liquid product from a trigger sprayer or aerosol sprayer. A spray kit with a user configurable modular nozzle assembly and a method for configuring a trigger or aerosol sprayer for a selected spray pattern includes a reconfigurable nozzle assembly with a replacement nozzle cap 150, 346 having modular fluidic circuit insert element retaining features 170, 172 or 376 and at least one detachable modular fluidic circuit insert element 152, 372 which a user may attach to the fluidic modular element retaining nozzle cap 150, 346.
摘要:
A long throw Pop-Up Irrigation Nozzle assembly has no oscillating or rotating parts and includes a cylindrical body having a fluid inlet and a sidewall defining at least one fluidic circuit configured to generate a selected spray pattern when irrigation fluid flows through the body. In order to throw long distance, droplet velocity, droplet size and droplet initial aim angle determine the throw to provide a low precipitation rate (“PR”) for fluidic sprays. The nozzle assembly and method of the present invention achieve a PR of 1 in/hr or less and good spray distribution with a scheduling coefficient (“SC”) of about 1.5 without utilizing any moving components to provide a significantly more cost effective nozzle assembly, as compared to prior art rotator nozzles.