Abstract:
Es wird ein Bioimpedanz-Messgerät zur Vermessung von Brustgewebe vorgestellt, mit einem Steuergerät und wenigstens einem Messapplikator, welcher wenigstens vier Kontaktelektroden aufweist, welche über elektrische Leitungen mit dem Steuergerät verbunden oder verbindbar sind, wobei das Steuergerät eingerichtet ist, ein elektrisches Wechselstromsignal zu erzeugen und an zwei der wenigstens vier Kontaktelektroden abzugeben, so dass diese als Stromelektroden fungieren, und ein elektrisches Wechselspannungssignal zwischen zwei der wenigstens vier Kontaktelektroden aufzunehmen, so dass diese als Spannungselektroden fungieren, wobei wenigstens zwei der Kontaktelektroden, die als Spannungselektroden fungieren, nicht gleichzeitig als Stromelektroden fungieren.
Abstract:
Die Erfindung betrifft ein Computer implementiertes Verfahren zur Bestimmung der Stärke und des räumlichen Ausmaßes der Lungenventilation einer Person (P1) umfassend wenigstens die folgenden Schritte: Ia. Bereitstellen von Akustik-Messdaten (A1) von mehreren Stellen der Lunge der Person (P1), wobei das Bereitstellen erst nach Abschluss der Untersuchung, nachdem die Messung der Person (P1) abschlossen ist, beginnt. Ib. Bereitstellen von Messdaten der elektrischen Impedanz (11) von mehreren Stellen der Lunge der Person (P1), wobei das Bereitstellen erst nach Abschluss der Untersuchung, nachdem die Messung der Person (P1) abschlossen ist, beginnt. II. Übergabe der Messdaten (A1, 11) an ein trainiertes Künstliches Neuronales Netz (KNN) III. Vorverarbeiten der Messdaten (A1, 11) in vorverarbeitete Messdaten (A1*, 11*) durch das Künstliche Neuronale Netz (KNN) IV. Anwendung des trainierten Künstlichen Neuronalen Netzes (KNN) auf die vorverarbeiteten Messdaten (A1*, I1*) zur Bestimmung der Stärke und des räumlichen Ausmaßes der Lungenventilation der Person (P1) durch das KNN, wobei die Werte der Lungenventilation als Ergebnisdaten (D2) erzeugt werden.
Abstract:
Embodiments for adjustable depth anatomical shell editing are disclosed. In an embodiment, a method for adjustable depth anatomical shell editing comprises: outputting, to a display device, a first anatomical shell of a cardiac structure, wherein the first anatomical shell is based on a plurality of signals sensed by a mapping probe; receiving, from a user input device, a selection of a portion of the first anatomical shell; generating a modified anatomical shell that has the selected portion removed to an approximate depth from the first anatomical shell, wherein the approximate depth is finite; and outputting, to the display device, the modified anatomical shell.
Abstract:
A method (12) for determining characteristics of a multi-material object is provided. The method includes producing a rotating electric field by providing an applied electrical signal set of individual electrical signal patterns to electrodes surrounding the multi-material object (122). The method also includes obtaining a measured electrical signal of electrical signals from the electrodes corresponding to each electrical signal pattern applied (124). An electrical network is determined based on the applied electrical signal set, the measured electrical signal set and an inverse of the applied electrical signal set. The method further includes determining the characteristics of the multi-material object by analyzing the electrical network (128).
Abstract:
The present relates to a method, system and a device for non-invasive detection of urine flow from the bladder into the kidney(s). The method, system and device rely on measurements made at distinct time points and can be used to detect Vesicoureteral reflux. The method, system and device are designed to detect changes in urine volume in the ureter(s), bladder and/or kidney(s). The method and device measure conductivity changes by bioelectrical impedance or electrical impedance tomography technology.
Abstract:
There is disclosed a method of determining electrical properties in a peripheral nerve (10) of a human or animal subject using a plurality of electrodes (24) spaced around a perimeter of the nerve, by applying a probe electrical signal to each of a plurality of combinations of the electrodes, and using the resulting electrical responses to determine the electrical properties, for example by carrying out an electrical impedance tomography image reconstruction.
Abstract:
Some embodiments described herein relate to a method that includes defining an electro-anatomical model of a heart. The electro-anatomical model can include conduction patterns for multiple patterns or phases identified by a measurement instrument. The electro-anatomical model can also include a voltage map of the heart. A portion of the heart containing a rotor can be identified based on circulation in one phase of the model. The rotor can be determined to be stable based on that portion of the heart having circulation in another phase of the model. The rotor can be characterized as a substrate rotor based on the rotor being stable and based on the voltage or a change in voltage at the portion of the heart containing the rotor. The rotor can be treated or ablated when the rotor is determined to be a substrate rotor.
Abstract:
The present invention relates to a device for imaging and diagnosing the condition of obstruction of the upper airway, which can image the condition of a change in the upper airway of an OSAS patient occurring during natural sleep by using EIT and can extract information required for diagnosis. The device for imaging and diagnosing the condition of obstruction of the upper airway by using EIT according to the present invention does not require high costs, enables repeated examination to be conducted without the risk of exposure to radioactive rays, and enables examination to be performed over a prolonged period of time in an actual natural sleep state, thereby accurately diagnosing the condition of obstruction of the upper airway.
Abstract:
The present invention refers to a module (1) to capture signals from the body of a patient (animal or human), comprising at least one sensor to capture cardiac electrical signals (4) and at least one sensor to capture body impedance signals (5). This invention also refers to a module (1) to capture signals from the body of a patient (animal or human), comprising at least one sensor (8) capable of simultaneously capturing cardiac electrical signals and/or body impedance signals.