摘要:
A method for generating a filtered EMG signal includes obtaining a combined signal, wherein the combined signal comprises an ECG signal and an EMG signal. A first high pass filter is applied to the combined signal and an ECG model signal is generated, based on the high pass filtered combined signal. The method further includes, generating a partially filtered EMG signal by subtracting the ECG model from the high pass filtered combined signal. A second high pass filter is then applied to the partially filtered EMG signal to generate a second EMG signal and to the ECG model signal to generate a second ECG model signal. A filtered EMG signal is generated based on the second EMG signal and the second ECG model by way of a gating technique.
摘要:
New and alternative approaches to the monitoring of cardiac signal quality for external and/or implantable cardiac devices. In one example, signal quality is monitored continuously or in response to a triggering event or condition and, upon identification of a reduction in signal quality, a device may reconfigure its sensing state. In another example, one or more trends of signal quality are monitored by a device, either continuously or in response to a triggering event or condition, and sensing reconfiguration may be performed in response to identified trends and events. In yet another example, a device may use a looping data capture mode to track sensing data in multiple vectors while primarily relying on less than all sensing vectors to make decisions and, in response to a triggering event or condition, the looped data can be analyzed automatically, without waiting for additional data capture to reconfigure sensing upon identification of the triggering event or condition. In another example a device calculates a composite cardiac cycle by overlaying signal morphology for a number of cardiac cycles and analyzes the composite cardiac cycle to calculate signal quality metrics.
摘要:
A method and apparatus for the quantitative determination of an individual's risk for sudden cardiac death (SCD) is described. Risk determination is accomplished and may have a sensitivity and specificity of greater than 95%, by generating linear and nonlinear mathematical digital ECG-constructed models from digital ECG-type data of an individual's digital ECG, determining stability/instability of digital ECG-constructed control model systems corresponding to the digital ECG-constructed models by a plurality of techniques and transforming stability/instability values obtained by the determining stability/instability into a quantitative value reflecting an individual's risk for SCD.
摘要:
The present disclosure facilitates capture of biosignal such as biopotential signals in microvolts, or sub-microvolts, resolutions that are at, or significantly below, the noise-floor of conventional electrocardiographic and biosignal acquisition instruments. In some embodiments, the exemplified system disclosed herein facilitates the acquisition and recording of wide-band phase gradient signals (e.g., wide-band cardiac phase gradient signals, wide-band cerebral phase gradient signals) that are simultaneously sampled, in some embodiments, having a temporal skew less than about 1 μs, and in other embodiments, having a temporal skew not more than about 10 femtoseconds. Notably, the exemplified system minimizes non-linear distortions (e.g., those that can be introduced via certain filters) in the acquired wide-band phase gradient signal so as to not affect the information therein.
摘要:
It is disclosed an electronic system to control the acquisition of an electrocardiogram. The system comprises a portable electronic device and a mobile electronic device. The mobile electronic device comprises an optical device for acquiring real-time images of a portion of a human body, a screen and a processing unit. The portable electronic device comprises a first, a second and a third electrode. The processing unit of the mobile electronic device comprises an electrodes placement guiding module for the first, second and third electrode. The screen is configured to display a real-time image representing said portion of the human body and further comprises a first positioning mark, a second positioning mark and a third positioning mark representing the positions wherein to apply the first, second and third electrode respectively.
摘要:
Physiological monitoring can be provided through a syncope sensor (64, 66) embedded into an electrocardiography monitor (12), which correlates syncope events and electrocardiographic data. Physiological monitoring can be provided through a lightweight wearable monitor (12) that includes two components: a flexible extended-wear electrode patch (15) and a reusable monitor recorder (14) that removably snaps into a receptacle (25) on the electrode patch (15). The wearable monitor (12) sits centrally on the patient's sternal midline (16) and includes a unique narrow "hourglass"-like shape, significantly improving the ability of the monitor to cutaneously sense cardiac electrical potential signals, particularly the P-wave and QRS interval signals. The electrocardiographic electrodes (38, 39) on the electrode patch (15) are tailored for axial positioning along the midline (16) of the sternum (13) to capture action potential propagation in an orientation that corresponds to the aVF lead in a conventional 12-lead electrocardiogram, which senses positive P-waves (271).
摘要:
A heartrate monitor detects (1604) heartbeats in a test signal. A local heartrate and an energy of acceleration are associated (1606, 1608, 1610) with the detected heartbeats. Detected heartbeats are included or excluded (1612) from a test set of heartbeats based on the local heartrate and energy of acceleration associated with the respective heartbeats. Anomalous heartbeats in the test set of heartbeats are detected (1622) using a sparse approximation model (1620). The heartrate monitor may detect heartbeats in a training heartbeat signal. A reference heart rate and an energy of acceleration are associated with detected beats of the training heartbeat signal and selectively included in a set of training data based on the heart rate and energy of acceleration associated with the detected beat in the training heartbeat signal. A dictionary of the sparse representation model may be generated using the set of training data.
摘要:
The present invention relates to a training assistance apparatus and a training assistance method. The training assistance apparatus comprises a collecting unit, a main control unit and a discharging unit; the collecting unit is configured to collect an electromyographic signal of a user's specific position during implementation of actions and output it to the main control unit after amplification and filtering; the main control unit is configured to determine an optimal electromyographic signal according to the received electromyogaphic signal, use the optimal electromyoelectrical signal to form a stimulation signal, output the stimulation signal to the discharging unit; the discharging unit forms a stimulation current according to the stimulation signal and applies the stimulation current upon the user's specific position. The present invention employs a closed-loop electromyographic stimulation manner of performing equivalence between the "collection-stimulation" type electromyographic signal and stimulation signal, and enables the action of a trainee to develop in an optimal direction. The progressive manner of the present invention more facilitates improving the training effect as compared with a fixed programmed manner in the prior art. In addition, the present invention does not limit constraints of place and time.
摘要:
Electrodes are used to measure an electrical signal (e.g., an electrogram). One or more filters are applied to the electrical signal to generate one or more filtered signals. Features of the filtered signals are evaluated to assess a sharpness corresponding to the electrical signal. Based on the sharpness, various characteristics of a morphology of the electrogram may be evaluated over a time period.
摘要:
Embodiments of a method for removal and replacement of artifacts in electrophysiological data from muscular activity in the a gastrointestinal tract of a patient are disclosed. The approach includes setting an artifact identification threshold based on the parameters of the data, assessing the full extent of the artifact in time, and replacing the values with ones that are neutral in the time series and minimizing the effect on a power spectrum of the data. More particularly, the method includes steps of identifying artifacts within the raw time series data, eliminating the identified artifacts, and replacing the artifacts with any of interpolated points or constant value points to create a clean time series data set representing valid gastrointestinal tract EMG signals.