Abstract:
The disclosure describes a porous membrane including the following: at least one polymeric feature on a surface of a porous membrane wherein the at least one polymeric features are bonded to the membrane using a nanoscale injecting molding device. Another aspect of the disclosure includes a porous membrane including the following: a first film layer; a second film layer; at least one polymeric feature between the first film layer and second film layer, wherein the at least one polymeric feature is bonded to at least the first film layer.
Abstract:
The present invention provides a filtration module comprising a stack of at least two spacers. At least one spacer in the stack comprises a first and a second outer plate and at least one internal permeate channel arranged in between the first and second outer plates such that the outer plates form two of the walls that define at least one internal permeate channel. The at least one internal permeate channel extend between two opposite sides, other than the first and second outer plates, of the spacer. The first and/or second outer plates of at least one spacer are porous or perforated such that liquid may be transported through the pores or perforations to said at least one internal permeate channel. The spacers of the stack are separated by a distance-pieces that are attached to the outer plates along the edge to the opposite sides between which the internal permeate channels extend, thereby forming filtrate channels between adjacent spacers in the stack. The present invention further provides a method for producing a filtration module and a filtration device.
Abstract:
An apparatus for performing electrodialysis at pressures greater than or equal to the ambient pressure is described. The apparatus includes an electrodialysis membrane stack (101) and housing. The electrodialysis membrane stack includes at least one electrodialysis cell (102). The electrodialysis apparatus includes electrodes that apply voltage across the electrodialysis stack. The housing pressurizes the electrodialysis stack at a stack pressure. The housing includes a cell chamber that receives the electrodialysis stack, the cell chamber including at least one pressurization port communicating with the cell chamber such that a portion of electrode solution is transmittable into a region of the cell chamber outside the electrodialysis stack. A system for performing electrodialysis at pressures greater than ambient pressure includes at least two solution loops, an electrode solution loop, and an electrodialysis apparatus operatively connected to the solution and electrode solution loops that performs electrodialysis at a stack pressure that is greater than ambient pressure.
Abstract:
To provide a liquid separation device capable of suppressing the lowering of filtration function due to an increase in flow channel resistance of permeated liquid resulting from that a separation membrane falls in a groove of a permeated liquid flow channel material, and breakage of the separation membrane surface accompanied thereby, a permeated liquid flow channel material disposed on the back side of a separation membrane is composed of a sheet-like material that a linear groove and a linear crest are alternately arrayed on one surface or both surfaces, wherein a groove width of the linear groove in the sheet-like material is 10 to 200 µm, and a ratio of the groove width of the linear groove to the pitch of the linear groove is 0.45 or more.
Abstract:
Die Erfindung betrifft eine Membranvorrichtung (10) zum Stoffaustausch zwischen Fluiden mit mehreren Membranlagen (12,14), zwischen denen Strömungskanäle ausgebildet sind. Erfindungsgemäß ist ein Strömungsvergleichmäßigungselement (16) aus mehreren helixförmigen Abstandshalterelementen (16a,16b,16c) zwischen zwei benachbarten Membranlagen (12,14) angeordnet.
Abstract:
A filter construction (160) is provided having a packing density of at least 300 square meters of active membrane filter area per cubic meter of external volume of said filter construction, said filter constructed of materials characterized by less than 250 mg of extracted contamination per m2 of wetted material.
Abstract:
A spiral wound type separation membrane element (1) includes a spiral wound type membrane component formed by superposing separation membranes (2) of membrane materials supported on nonwoven fabric members on both surfaces of a permeated liquid passage forming member (3) and bonding three sides with an adhesive thereby defining an envelope-like membrane (4), mounting an opening of the envelope-like membrane (4) on a water collection pipe (5) and bonding the same with an adhesive and spirally winding the envelope-like membrane (4) around the outer peripheral surface of the water collection pipe (5) along with a raw liquid passage forming member (6). The outer peripheral surface of the envelope-like membrane (4) forming the spiral wound type membrane component (1) is covered with a sheath member (10), and anti-telescopic members (11a,11b) are mounted on both end surfaces of the envelope-like membrane (4) respectively. Each of the aforementioned components forming the spiral wound type separation membrane element (1) is made of heat-resistant alkali-resistant plastic.
Abstract:
Module (10) à membrane enroulée en spirale, présentant une membrane semi-perméable (24), laquelle comporte une région de perméat central (B) à haute pression, bordée sur les côtés opposés par deux parties de bordure (A, C) à pression plus faible. Les parties de bordure (A, C) facilitent la dispersion et la récupération du fluide d'alimentation (93) en cours de traitement, et elles aident à obtenir un écoulement plus uniforme du fluide d'alimentation (93) dans la région à haute pression (B) de la membrane. Dans un mode de réalisation, le module (10) comporte des moyens (20, 20A) d'écoulement d'entrée et de sortie pour un écoulement à contrecourant d'un fluide de balayage dans le perméat. La région de perméat (B) à haute pression est, de préférence, une pièce d'écartement poreuse bordée sur deux côtés de pièces d'écartement poreuses (A, C) de faible densité. Selon un mode de réalisation, la région de perméat (B) à pression plus élevée, ainsi que les régions de perméat (A, C) de bordures à faible chute de pression, sont obtenues par des lignes (301) d'adhésif ou de colle (111), ou lignes positionnées spécifiquement, ayant une taille et un écartement spécifique. Les points (111) (ou lignes) (301) sont positionnés dans une configuration axiale par rapport au conduit central (15). Les points de colle (111) ou lignes (301) sont positionnés dans le passage du perméat (60) dans une configuration permettant d'obtenir un écoulement régulier du fluide de balayage à contre-courant, à courant parallèle, ou à courant transversal.