Abstract:
The invention relates to a canvas to be painted, consisting of a fabric comprising plant fibres, especially linen, jute, ramie and/or sisal, said fabric also being coated with a size.
Abstract:
A medical bandaging product including a sealable enclosure and a resin-impregnated substrate including a knitted fabric layer having upper and lower surfaces with interconnected knitted fabric yarns knitted such that at least one yarn extends across a gap from the upper surface to the lower surface along a width of the substrate in a back-and-forth pattern forming a single, integrated three-dimensional structure, wherein the at least one yarn extends between non-adjacent needle positions in a back-and-forth pattern in successive courses to provide a continuous pattern on both the upper and lower major surfaces of the substrate, wherein needle bed gap spacing is between 7.1 mm and 8 mm and a total thickness of the substrate is between 4.75 mm and 4.90 mm.
Abstract:
A low density fabric substrate for a medical bandaging product. The substrate has a plurality of longitudinally-extending voids formed in the fabric for permitting water penetration through the fabric thickness from one of the major faces to the other major faces. A reactive system is impregnated into or coated onto the substrate and remains stable when maintained in substantially moisture-free conditions and hardens upon exposure to sufficient moisture to form a rigid, self supporting structure. A soft, flexible protective material covers at least one of the major faces of the substrate along its length to provide a cushioning barrier between the substrate and the skin of a patient when the material is in use.
Abstract:
A medical bandage is disclosed including a knitted spacer fabric cover or padding positioned in surrounding relation on a moisture-hardenable substrate. A reactive system is applied to and into the thickness of the substrate. The reactive system having a first state wherein the substrate remains in a flexible, conformable condition and a second state wherein the reactive system hardens, simultaneously hardening the substrate into a desired conformation.
Abstract:
The present invention relates to three-dimensional catalyst gauzes for gas reactions knitted in two or more layers from noble metal wires in which the meshes of the individual layers are joined to one another by pile threads. In these catalyst gauzes weft threads are inserted between the mesh layers. These catalyst gauzes have an increased catalytic activity and efficiency in gas reaction. These improvements enable operation with a lower total amount of noble metal employed, for example by reducing the number of gauzes and/or the length of the wire processed in the catalyst gauze and/or the wire thickness, without thereby having to accept disadvantages with respect to the yield and selectivity of the gas reaction, mechanical strength and service life of the gauzed or unavoidable loss of noble metal.
Abstract:
The present invention relates to three-dimensional catalyst gauzes for gas reactions knitted in two or more layers from noble metal wires in which the meshes of the individual layers are joined to one another by pile threads. In these catalyst gauzes weft threads are inserted between the mesh layers. These catalyst gauzes have an increased catalytic activity and efficiency in gas reaction. These improvements enable operation with a lower total amount of noble metal employed, for example by reducing the number of gauzes and/or the length of the wire processed in the catalyst gauze and/or the wire thickness, without thereby having to accept disadvantages with respect to the yield and selectivity of the gas reaction, mechanical strength and service life of the gauzed or unavoidable loss of noble metal.
Abstract:
A medical bandaging product including a sealable enclosure and a resin-impregnated substrate including a knitted fabric layer having upper and lower surfaces with interconnected knitted fabric yarns knitted such that at least one yarn extends across a gap from the upper surface to the lower surface along a width of the substrate in a back-and-forth pattern forming a single, integrated three-dimensional structure, wherein the at least one yarn extends between non-adjacent needle positions in a back-and-forth pattern in successive courses to provide a continuous pattern on both the upper and lower major surfaces of the substrate, wherein needle bed gap spacing is between 7.1 mm and 8 mm and a total thickness of the substrate is between 4.75 mm and 4.90 mm.
Abstract:
The present invention relates to three-dimensional catalyst gauzes for gas reactions knitted in two or more layers from noble metal wires in which the meshes of the individual layers are joined to one another by pile threads. In these catalyst gauzes weft threads are inserted between the mesh layers. These catalyst gauzes have an increased catalytic activity and efficiency in gas reaction. These improvements enable operation with a lower total amount of noble metal employed, for example by reducing the number of gauzes and/or the length of the wire processed in the catalyst gauze and/or the wire thickness, without thereby having to accept disadvantages with respect to the yield and selectivity of the gas reaction, mechanical strength and service life of the gauzed or unavoidable loss of noble metal.