摘要:
A method and system includes acquiring a seismic dataset while fluids are injected into the subsurface with seismic data recorded at multiple sensor locations. Seismic travel times are computed between sensors and subsurface locations using a velocity model. Travel times and travel time delays between pairs of sensors may be used as input to determine a similarity coefficient associated with subsurface positions. The similarity coefficients are determined using cross correlation, semblance calculations or eigenstructure decomposition. The coefficient values are related to the acoustic response at each subsurface position and may be summed together for each position for comparison with other other subsurface positions to determine the position of a fluid front moving through the subsurface. The values may be displayed to illustrate the position of fluids in the subsurface and displayed to show the time variance of the fluid position.
摘要:
The present invention relates to a method for estimating the position and trajectory of a drill during drilling of boreholes in rock. The method comprising the steps of determining the starting position of the drill bit and recording the received transient seismic waves generated by the drill on impact, and estimating the difference in arrival time between events. From these, the relative distances, between the positions of the drill bit at different events are calculated and from these the present position is calculated.
摘要:
The location of a downhole source (30) of a transmitted acoustic signal is determined using at least one downhole signal receiver (40,42,44,46,48). Either or both the triangulation method and the holographic method are used to determine the signal location.
摘要:
Procede de forage d'un trou (20), de telle sorte que son axe soit sensiblement parallele a l'axe d'un trou deja fore (20) pour positionner un emetteur acoustique (28) et un recepteur (30) contre le trou en cours de forage de sorte que leur position sur la paroi soit sur un plan horizontal coupant l'axe de l'alesage du trou en cours de forage. Ensuite, un signal acoustique de frequence acoustique est transmis dans la paroi du trou. Le signal reflechi est recu de la paroi adjacente en meme temps que d'autres reflexions supplementaires indesirees. Le dephasage est alors determine entre le signal transmis et le signal recu et les changements de distance entre la paroi du trou de l'alesage sont ensuite determines.
摘要:
Embodiments of the invention provide a downhole device that is intended to be co- located with an optical fiber cable to be found, for example by being fixed together in the same clamp. The device has an accelerometer or other suitable orientation determining means that is able to determine its positional orientation, with respect to gravity. A vibrator or other sounder is provided, that outputs the positional orientation information as a suitable encoded and modulated acoustic signal. A fiber optic distributed acoustic sensor deployed in the vicinity of the downhole device detects the acoustic signal and transmits it back to the surface, where it is demodulated and decoded to obtain the positional orientation information. Given that the device is co-located with the optical fiber the position of the fiber can then be inferred. As explained above, detecting the fiber position is important during perforation operations, so that the fiber is not inadvertently damaged.
摘要:
A method of locating a drilling apparatus and/or a borehole in a subterranean region, comprising the steps of: (A) transmitting seismic waves into the subterranean region during a subterranean drilling operation, the seismic waves being transmitted from a location remote from said drilling apparatus; (B) detecting a seismic response from said drilling apparatus or borehole; and (C) comparing said detected response with predetermined seismic survey data of said subterranean region to determine the location of said apparatus or borehole.
摘要:
Methods of identifying rock properties in real-time during drilling, are provided. An example of such a method includes connecting a downhole sensor subassembly (104) between a drill bit (101) and a drill string (117), operably coupling acoustic sensors (102) to a downhole data interface (103), and operably coupling a surface computer (124) to the downhole data interface (103), The method can also include receiving raw acoustic sensor data generated real-time as a result of rotational contact of the drill bit (101) with rock during drilling, transforming the raw data into the frequency domain, filtering the transformed data, and deriving a plurality of acoustic characteristics (114) from the filtered data (301), This can be performed by a petrophysical properties (115) analyzing program (112) stored in memory (122) of the computer (124). The method can also include deriving petrophysical properties (115) from the filtered data (301) utilizing a petrophysical properties evaluation algorithm (303) employable to predict one or more petrophysical properties (115) of rock undergoing drilling.