Abstract:
A variable area fan nozzles (14) comprising an array of rigid petals (18) hinged to a lip area at the downstream end of a thrust reverser sleeve (or half-sleeve). In one embodiment, the actuation system comprises a rotatable ring segment (28), a drive system (30) for rotating the ring segment, a plurality of cams (36) attached or integrally formed with the ring segment (28), a plurality of cam followers (42, 44), and a plurality of petal linkages (80) which operatively couple the petals (18) to the cam followers (42, 44). This actuation system controls the deflection of the petals (18), thereby controlling the amount of opening and the rate at which the fan nozzle throat area changes. Each cam (36) may have forward- and rearward-facing camming surfaces (48, 46) that interact with the cam followers (42, 44) to force the petals to pivot outward or inward respectively.
Abstract:
Die Erfindung betrifft eine konvergent-divergente Schubdüse (30) für ein Turbofan-Triebwerk eines Überschallflugzeugs, wobei die Schubdüse (30) eine Innenwand (31) aufweist, die einen Strömungskanal (15) durch die Schubdüse radial außen begrenzt, wobei der Strömungskanal (15) eine Düsenhalsfläche (A8) und eine Düsenaustrittsfläche (A9) aufweist. Die Innenwand (31) umfasst eine erste Gruppe verstellbarer Segmente (40), die einen stromaufwärtigen konvergenten Bereich der Schubdüse (30) ausbilden, und eine zweite Gruppe verstellbarer Segmente (50), die einen stromabwärtigen konstant/divergenten Bereich der Schubdüse (30) ausbilden. Es ist vorgesehen, dass die Segmente (40) der ersten Gruppe oder die Segmente (50) der zweiten Gruppe zumindest in einem Bereich (42), der an die andere Gruppe angrenzt, zum Strömungskanal (15) hin konvex gekrümmt sind, im Bereich der konvexen Krümmung die Düsenhalsfläche (A8) ausbilden und axial beabstandet zur axialen Position der Düsenhalsfläche (A8) an die Segmente (50) der jeweils anderen Gruppe angrenzen. Dabei sind aneinander angrenzende Segmente (40, 50) der beiden Gruppen durch einen Schiebemechanismus (45, 55) miteinander verbunden.
Abstract:
A divergent flap includes a hinge joint to connect the divergent flap to a convergent flap, a plow structure, a first wall, a second wall, and two side walls. The plow structure is at a plow end of the flap opposite the hinge joint. The first wall and the second wall each extend from the hinge joint to the plow end. The second wall is spaced apart from the first wall by the two side walls to form at least one cooling channel extending between the hinge joint and the plow end. The divergent flap is integrally formed in layer-by-layer fashion as a single piece.
Abstract:
An exhaust nozzle for a gas turbine engine may include a plurality of flap trains in the exhaust stream of the gas turbine engine. The flap trains are operable to selectively control three separate flow paths of gas that traverse the engine. A first stream of is the core airflow. The second stream of air is peeled off of the first stream to form a low pressure fan bypass air stream. The third stream of air traverses along the engine casing and is passed over a flap assembly to aid in cooling. The flaps are operable converge/diverge to control the multiple streams of air.
Abstract:
A nozzle system (10) includes a multitude of circumferentially distributed divergent seals (21) that circumscribe an engine centerline (A). Each divergent seal (21) includes a multiple of divergent seal intakes (100) adjacent to a joint structure (42) to receive cooling airflow. Each divergent seal body is manufactured of a metallic hot sheet inner skin (102) and a metallic cold sheet outer skin (104). The skins (102, 104) form a multiple of longitudinal channels (106) which communicate with a multiple of edge channels (108) formed within the first longitudinal side (54) and the second longitudinal side (56) of each divergent seal. The multiple of edge channels (108) are located transverse to the longitudinal axis (L) and are raked aft to facilitate cooling of the gas path surface of each divergent seal (21) and adjacent divergent flaps (18).
Abstract:
A turbine engine nozzle (120) assembly has an upstream flap (22) and a downstream flap (24) pivotally coupled thereto for relative rotation about a hinge axis (502). An actuator linkage (70) is coupled to the flaps for actuating the nozzle between a number of throat (40) area conditions. First (126) and second (124) mode struts respectively restrict rotation of the downstream flap in first and second directions.
Abstract:
A balance pressure control (66) is provided for flaps (31) which pivot in a rear of a gas turbine engine nozzle to change the cross-sectional area of the nozzle. An actuator (41) drives a sync ring (44) to move the flaps (31) through a linkage. A supply of pressurized air is also provided to the sync ring (44) to assist the actuator in resisting forces from high pressure gases within the nozzle. When those forces are lower than normal the flow of air to the rear of the sync ring (44) is reduced or blocked.