Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Beurteilung der Qualität eines längsbewegten strangförmigen Gutes (1), insbesondere eines Garnes, umfassend die Schritte Beaufschlagen des Gutes (1) mit polychromatischem, vorzugsweise weißem, Licht, Erfassen eines Messsignals, das die roten, grünen und blauen Farbanteile (aR, bG, cB) des vom Gut reflektierten Lichtes repräsentiert, Transformieren der roten, grünen und blauen Farbanteile (aR, bG, cB) in einen Bewertungs-Farbraum, in dem Messpunkte (M) des Messsignals durch eine erste (a*) und eine zweite Koordinate (b*), die die Farbe repräsentieren, und durch eine dritte Koordinate (L*), die die Helligkeit repräsentiert, beschrieben werden. Erfindungsgemäß erfolgt die Beurteilung der Qualität des Gutes (1) anhand der ersten (a*), zweiten (b*) und dritten (L*) Koordinate der Messpunkte (M) in dem Bewertungs-Farbraum erfolgt. Die vorliegende Erfindung betrifft außerdem eine Vorrichtung zur Durchführung des Verfahrens.
Abstract:
A plasmonic pixel structure, comprising: a substrate; a plurality of nano-scale structures each comprising conducting and dielectric components, whereby the nano-scale structures are configured to act as nano-antennas. The nano-scale structures 5 have resonant frequencies that depend on the conducting component and sizes of the nano-scale structures. The conducting component and the sizes of the nano-scale structures are selected according to a wavelength component or components of incident light desired to be reflected or transmitted by the nano-scale structures, and the conducting component and the sizes of the nano-scale structures are selected 10 such that the nano-scale structures have respective resonant frequencies corresponding to a colour scheme.
Abstract:
[Problem] To provide a technique for calculating the psychophysical value of a color corresponding to an arbitrarily defined tone by modeling a tone concept defined in the PCCS (Practical Color Co-ordinate System). [Solution] A method for, regarding multiple types of tones defined in the PCCS, generating a definitional equation for each saturation to which each of the tones belongs, wherein a computer acquires the Munsell values of colors belonging to respective multiple tones belonging to the same saturation among the multiple types of tones defined in the PCCS, the computer stores the acquired multiple Munsell values in a predetermined storage device, the computer converts each of the multiple Munsell values stored in the storage device into a value in a predetermined color space composed of two axes of values representing lightness and values representing vividness, and the computer performs a predetermined regression calculation on a point group projected to the predetermined color space to find a regression equation passing through the origin of the predetermined color space.
Abstract:
[Problem] To provide a technique for calculating the psychophysical value of a color corresponding to an arbitrarily defined tone by modeling a tone concept defined in the PCCS (Practical Color Co-ordinate System). [Solution] A method for, regarding multiple types of tones defined in the PCCS, generating a definitional equation for each saturation to which each of the tones belongs, wherein a computer acquires the Munsell values of colors belonging to respective multiple tones belonging to the same saturation among the multiple types of tones defined in the PCCS, the computer stores the acquired multiple Munsell values in a predetermined storage device, the computer converts each of the multiple Munsell values stored in the storage device into a value in a predetermined color space composed of two axes of values representing lightness and values representing vividness, and the computer performs a predetermined regression calculation on a point group projected to the predetermined color space to find a regression equation passing through the origin of the predetermined color space.
Abstract:
A method of selecting optimal inks from a plurality of ink candidates for a given colour, said method comprising a) obtaining a measure of spectral reflectance of a print substrate; b) obtaining a measure of the spectral reflectance of a first candidate ink of a first colour; c) predicting a colour gamut for the first candidate ink based on the spectral reflectance of the ink and the spectral reflectance of the substrate; d) repeating steps b) and c) for a second ink candidate of the first colour; e) selecting the ink candidate for which the predicted colour gamut includes the most target spot colours as the optimal ink for the first colour.