Abstract:
A method for object classification in a decision tree based adaptive boosting (AdaBoost) classifier implemented on a single-instruction multiple-data (SIMD) processor is provided that includes receiving feature vectors extracted from N consecutive window positions in an image in a memory coupled to the SIMD processor and evaluating the N consecutive window positions concurrently by the AdaBoost classifier using the feature vectors and vector instructions of the SIMD processor, in which the AdaBoost classifier concurrently traverses decision trees for the N consecutive window positions until classification is complete for the N consecutive window positions.
Abstract:
An apparatus for determining a depth map for an image comprises an image unit (105) which provides an image with an associated depth map comprising depth values for at least some pixels of the image. A probability unit (107) determines a probability map for the image comprising probability values indicative of a probability that pixels belong to a text image object. A depth unit (109) generates a modified depth map where the modified depth values are determined as weighted combinations of the input values and a text image object depth value corresponding to a preferred depth for text. The weighting is dependent on the probability value for the pixels. The approach provides a softer depth modification for text objects resulting in reduced artefacts and degradations e.g. when performing view shifting using depth maps.
Abstract:
A method of processing an acoustic image includes the steps of acquiring acoustic signals generated by acoustic sources in a predetermined region of space, generating a multispectral 3D acoustic image that includes a collection of 2D acoustic images, performing a frequency integration of the multispectral acoustic image for generating a 2D acoustic map locating at least one target acoustic source of interest and modeling the signal spectrum associated with the target acoustic source, generating a classification map obtained by comparing the signal spectrum of each signal associated with each pixel of the multispectral acoustic image and the model of the signal spectrum associated with the target acoustic source to distinguish the spectrum of the signal associated with the target acoustic source from the signal spectra associated with the remaining acoustic sources, and merging the classification map and the acoustic map to obtain a merged map.
Abstract:
An image processing system comprises a template matching engine (TME). The TME reads an image from the memory; and as each pixel of the image is being read, calculates a respective feature value of a plurality of feature maps as a function of the pixel value. A pre-filter is responsive to a current pixel location comprising a node within a limited detector cascade to be applied to a window within the image to: compare a feature value from a selected one of the plurality of feature maps corresponding to the pixel location to a threshold value; and responsive to pixels for all nodes within a limited detector cascade to be applied to the window having been read, determine a score for the window. A classifier, responsive to the pre-filter indicating that a score for a window is below a window threshold, does not apply a longer detector cascade to the window before indicating that the window does not comprise an object to be detected.
Abstract:
A method for face image recognition is disclosed. The method comprises generating one or more face region pairs of face images to be compared and recognized; forming a plurality of feature modes by exchanging the two face regions of each face region pair and horizontally flipping each face region of each face region pair; receiving, by one or more convolutional neural networks, the plurality of feature modes, each of which forms a plurality of input maps in the convolutional neural network; extracting, by the one or more convolutional neural networks, relational features from the input maps, which reflect identity similarities of the face images; and recognizing whether the compared face images belong to the same identity based on the extracted relational features of the face images. In addition, a system for face image recognition is also disclosed.
Abstract:
An information processing device includes a feature amount extraction unit configured to extract each feature amount from a connected image generated by connecting images photographed from different viewpoints; and a specific object recognition unit configured to perform a process of determining a position of a specific object based on the feature amount extracted by the feature amount extraction unit. The feature amount extraction unit performs a feature amount extraction process to which a separated filter in which filter-formed regions are set to be separated is applied.
Abstract:
A system and method for determination of importance of attributes among a plurality of attribute importance models incorporating a segmented attribute kerneling (SAK) method of attribute importance determination. The method permits operation of multiple attribute importance algorithms simultaneously, finds the intersecting subset of important attributes across the multiple techniques, and then outputs a consolidated ranked set. In addition, the method identifies and presents a ranked subset of the attributes excluded from the union.
Abstract:
Embodiments of the present invention provide a face detector training method, a face detection method, and apparatuses. In the present invention, during a training phase, a flexible block based local binary pattern feature and a corresponding second classifier are constructed, appropriate second classifiers are searched for to generate multiple first classifiers, and multiple layers of first classifiers that are obtained by using a cascading method form a final face detector; and during a detection phase, face detection is performed on a to-be-detected image by using a first classifier or a face detector that is learned during a training process, so that a face is differentiated from a non-face, and a face detection result is combined and output. During this process, each FBLBP feature includes one pivot block and at least one neighbor block. The pivot block and the neighbor block are equal in size, and positions of each neighbor block and the pivot block are not strictly limited. Therefore, flexibility is high, robustness is improved, and meanwhile a false detection rate is reduced.
Abstract:
Embodiments of the present invention disclose a method for generating a strong classifier for face detection, and the method includes: determining, according to a size of a prestored image training sample, a parameter of at least one weak classifier of the image training sample; obtaining a sketch value of each of the weak classifiers of the image training sample according to a preset threshold of a weak classifier and the parameter of each of the weak classifiers; calculating a weighted classification error of each of the weak classifiers according to the sketch value and an initial weight of the image training sample, and obtaining at least one optimal weak classifier according to the weighted classification error; and generating a strong classifier for face detection according to the optimal weak classifiers. The embodiments of the present invention further disclose an apparatus for generating a strong classifier for face detection. The embodiments of the present invention have advantages of improving robustness of code against noise and reducing a false detection rate of face detection.