-
1.
公开(公告)号:EP4391919A1
公开(公告)日:2024-07-03
申请号:EP21955242.9
申请日:2021-08-27
Applicant: Exo Imaging Inc.
Inventor: YANG, Yongyi , WERNICK, Miles N. , BOWMAN, Jonathan A.
CPC classification number: A61B8/06 , A61B8/0891 , A61B8/488 , A61B8/0841 , G06T7/0016 , G06T2207/1013220130101 , G06T2207/3010420130101 , G06T2207/2008420130101
-
公开(公告)号:EP4005472B1
公开(公告)日:2024-05-22
申请号:EP19939547.6
申请日:2019-11-22
CPC classification number: G06T7/0016 , G06T2207/3010420130101 , G06T2207/1001620130101 , G06T2207/1011620130101 , A61B6/481 , A61B6/486 , A61B6/504 , A61B6/5264 , A61B6/463 , A61B6/503
-
公开(公告)号:EP4430560A1
公开(公告)日:2024-09-18
申请号:EP22812631.4
申请日:2022-11-03
Applicant: Koninklijke Philips N.V.
Inventor: SALEHI, Leili , SINHA, Ayushi , ERKAMP, Ramon, Quido , TOPOREK, Grzegorz, Andrzej , PANSE, Ashish, Sattyavrat
CPC classification number: A61B6/504 , A61B6/5235 , G06T7/0016 , G06T2207/1008120130101 , G06T2207/1012120130101 , G06T2207/2008120130101 , G06T2207/2008420130101 , G06T2207/3010420130101
-
公开(公告)号:EP4390837A1
公开(公告)日:2024-06-26
申请号:EP22307002.0
申请日:2022-12-22
Applicant: Imagine Institut des Maladies Génétiques Necker Enfants Malades , Assistance Publique Hôpitaux de Paris , Université Paris Cité , Institut National de la Santé et de la Recherche Médicale , Institut Mines Telecom
Inventor: BLOCH, Isabelle , DELMONTE, Alessandro , SARNACKI, Sabine
CPC classification number: G06T7/11 , G06T2207/3000420130101 , G06T2207/3000820130101 , G06T2207/3010120130101 , G06T2207/3010420130101 , G06T2207/3008120130101 , G06T2207/2008420130101
Abstract: A method for generating segmented images representing anatomic structures is disclosed. The method comprises: performing a segmentation of an input image to generate a first, second and third segmented images by detecting voxels that represent respectively a bone, an organ or a vessel and using respectively a first, second and third 3D convolutional neural network, CNN, applied to the input image. The method comprises performing a segmentation of the input image to generate a fourth segmented image by detecting voxels that represent a bone, an organ or a vessel using a fourth 3D CNN; and generating an aggregated segmented image by combining the segmented images. The fourth 3D CNN is a multi-structure neural network trained to detect bones, vessels and at least one organ. The first 3D CNN is a bones specific neural network trained to detect one or more bones. The second 3D CNN is an organ specific neural network trained to detect one or more organs. The third 3D CNN is a vessels specific neural network trained to detect one or more vessels in an image.
-
5.
公开(公告)号:EP4383189A1
公开(公告)日:2024-06-12
申请号:EP22212260.8
申请日:2022-12-08
Applicant: Koninklijke Philips N.V.
Inventor: WIEMKER, Rafael , NICKISCH, Hannes , BONTUS, Claas , BROSCH, Tom , PETERS, Jochen , WEESE, Rolf Jürgen
CPC classification number: G06T7/11 , G06T7/187 , G06T2207/1008120130101 , G06T2207/1008820130101 , G06T2207/1009620130101 , G06T2207/2010120130101 , G06T2207/2004120130101 , G06T2207/3004820130101 , G06T2207/3010420130101
Abstract: It is an object of the invention to provide an apparatus 110 that allows for assisting a user in determining an improved subdivision into arterial feeding regions in an organ of a patient 121. An image providing unit 111 provides an image of an organ of a subject. A geodesic distance map generation unit 113 generates a geodesic distance map for a region of interest based on the anatomical image, wherein a voxel of the geodesic distance map is given by a cumulated path cost from a predetermined seed to the respective voxel and wherein the path cost is determined based on a cost function taking into account a vesselness filter response and/or a contrast agent density determined, respectively, based on the image. A geodesic distance map providing unit 114 provides the geodesic distance map to a user and/or to further processing to determine the arterial feeding regions.
-
公开(公告)号:EP3326092B1
公开(公告)日:2024-04-17
申请号:EP16745937.9
申请日:2016-07-14
IPC: G16H50/50
CPC classification number: G06T2207/3010420130101 , A61B5/026 , G06T7/0012 , G16H50/50 , G06T2207/1008120130101
-
7.
公开(公告)号:EP4427190A1
公开(公告)日:2024-09-11
申请号:EP22850752.1
申请日:2022-12-14
Applicant: FUNDACIÓN CENTRO DIAGNÓSTICO NUCLEAR , Comisión Nacional De Energía Atómica (CNEA) , Universidade de Coimbra
CPC classification number: G06T7/0012 , G06T2207/1010420130101 , G06T2207/1010820130101 , G06T2207/3010420130101 , A61B5/026 , A61B5/0044
-
公开(公告)号:EP4412528A1
公开(公告)日:2024-08-14
申请号:EP22773669.1
申请日:2022-09-07
Applicant: Koninklijke Philips N.V.
Inventor: THIS, Alexandre , FLORENT, Raoul , LEVRIER, Claire , SCHMITT, Holger , VAN DER HORST, Arjen
CPC classification number: A61B6/4441 , A61B6/503 , A61B6/504 , A61B6/5217 , G06T7/0016 , A61B6/481 , A61B6/507 , A61B5/02007 , A61B5/0215 , A61B5/021 , A61B5/026 , A61B6/466 , A61B6/463 , A61B6/486 , A61B6/487 , G06T2207/1001620130101 , G06T2207/1011620130101 , G06T2207/3010420130101 , G06T2207/3017220130101
-
公开(公告)号:EP3291725B1
公开(公告)日:2024-07-24
申请号:EP16789002.9
申请日:2016-05-06
CPC classification number: G06T7/90 , A61B5/0059 , A61B5/0261 , A61B5/445 , A61B5/0075 , G06T7/0012 , G06T2207/1002420130101 , G06T2207/3010420130101 , A61B5/0062
-
公开(公告)号:EP4394694A1
公开(公告)日:2024-07-03
申请号:EP22217379.1
申请日:2022-12-30
Applicant: Siemens Healthineers AG
Inventor: ITU, Lucian Mihai , CIMEN, Serkan , BERGER, Martin , NEUMANN, Dominik , TURCEA, Alexandru , GULSUN, Mehmet Akif , PASSERINI, Tiziano , SHARMA, Puneet
CPC classification number: G06T7/0012 , G06T2207/1013220130101 , G06T2207/1007220130101 , G06T2207/3010420130101 , G16H50/30 , G16H30/40 , G16H50/50 , G16H30/20 , G16H50/20
Abstract: Techniques for processing multiple cardiac images are disclosed. The processing may take place either during or after an angiography exam of a coronary artery of interest. The multiple cardiac images are obtained either during or after the angiography exam. Each of the multiple cardiac images depicts a respective segment of the coronary artery of interest (3100). A geometric structure of the coronary artery of interest is determined based on the multiple cardiac images (3200). A lumped parameter model of the coronary artery of interest is determined based on the geometric structure (3300), and respective values of at least one hemodynamic index at a position of the coronary artery of interest is determined based on the lumped parameter model of the coronary artery of interest (3400).
-
-
-
-
-
-
-
-
-