摘要:
The present document relates to audio source coding systems. In particular, the present document relates to audio source coding systems which make use of linear prediction in combination with a filterbank. A method for estimating a first sample (615) of a first subband signal in a first subband of an audio signal is described. The first subband signal of the audio signal is determined using an analysis filterbank (612) comprising a plurality of analysis filters which provide a plurality of subband signals in a plurality of subbands from the audio signal, respectively. The method comprises determining a model parameter (613) of a signal model; determining a prediction coefficient to be applied to a previous sample (614) of a first decoded subband signals derived from the first subband signal, based on the signal model, based on the model parameter (613) and based on the analysis filterbank (612); wherein a time slot of the previous sample (614) is prior to a time slot of the first sample (615); and determining an estimate of the first sample (615) by applying the prediction coefficient to the previous sample (614).
摘要:
The present document relates to audio source coding systems. In particular, the present document relates to audio source coding systems which make use of linear prediction in combination with a filterbank. A method for estimating a first sample (615) of a first subband signal in a first subband of an audio signal is described. The first subband signal of the audio signal is determined using an analysis filterbank (612) comprising a plurality of analysis filters which provide a plurality of subband signals in a plurality of subbands from the audio signal, respectively. The method comprises determining a model parameter (613) of a signal model; determining a prediction coefficient to be applied to a previous sample (614) of a first decoded subband signals derived from the first subband signal, based on the signal model, based on the model parameter (613) and based on the analysis filterbank (612); wherein a time slot of the previous sample (614) is prior to a time slot of the first sample (615); and determining an estimate of the first sample (615) by applying the prediction coefficient to the previous sample (614).
摘要:
The invention relates to a method for speech signal analysis, modification and synthesis comprising a phase for the location of analysis windows by means of an iterative process for the determination of the phase of the first sinusoidal component and comparison between the phase value of said component and a predetermined value, a phase for the selection of analysis frames corresponding to an allophone and readjustment of the duration and the fundamental frequency according to certain thresholds and a phase for the generation of synthetic speech from synthesis frames taking the information of the closest analysis frame as spectral information of the synthesis frame and taking as many synthesis frames as periods that the synthetic signal has. The method allows a coherent location of the analysis windows within the periods of the signal and the exact generation of the synthesis instants in a manner synchronous with the fundamental period.
摘要:
A method and an apparatus for encoding and decoding audio signals using adaptive sinusoidal pulse coding are provided. The audio signal encoding method includes the steps of dividing a synthesized audio signal into a plurality of sub-bands, calculating the energy of each sub-band, selecting a predetermined number of sub-bands having a relatively large amount of energy from the sub-bands, and performing sinusoidal pulse coding with regard to the selected sub-bands. Application of sinusoidal pulse coding based on consideration of the amount of energy of each sub-band of the synthesized signal improves the quality of the synthesized signal more efficiently.
摘要:
Provided are a method and an apparatus for decoding an audio signal. A method for decoding an audio signal encoded by a layered sinusoidal pulse coding scheme using one or more sinusoidal pulses includes decoding the encoded audio signal, setting a smoothing frequency band of the decoded audio signal according to a layer structure of the layered sinusoidal pulse coding scheme, dividing the smoothing frequency band into one or more subbands, and smoothing the decoded audio signal on a subband-by-subband basis. Accordingly, a decoding operation time can be reduced and the quality of a synthesized signal can be improved by variably setting a frequency band to be smoothed, when decoding an audio signal encoded by a layered sinusoidal pulse coding scheme using one or more sinusoidal pulses.
摘要:
The invention relates to the coding of audio signals that may include both speech-like and non-speech-like signal components. It describes methods and apparatus for code excited linear prediction (CELP) audio encoding and decoding that employ linear predictive coding (LPC) synthesis filters controlled by LPC parameters, a plurality of codebooks each having codevectors, at least one codebook providing an excitation more appropriate for non-speech-like signals and at least one codebook providing an excitation more appropriate for speech-like signals, and a plurality of gain factors, each associated with a codebook. The encoding methods and apparatus select from the codebooks codevectors and/or associated gain factors by minimizing a measure of the difference between the audio signal and a reconstruction of the audio signal derived from the codebook excitations. The decoding methods and apparatus generate a reconstructed output signal from the LPC parameters, codevectors, and gain factors.
摘要:
Provided are an encoding method and apparatus for efficiently encoding a sinusoidal signal whose magnitude is less than a masking value according to a psychoacoustic model, a decoding method and apparatus for decoding an encoded sinusoidal signal, and a computer-readable recording medium having recorded thereon a program for executing the encoding method/the decoding method. By using a particular code indicating that the magnitude of a first sinusoidal signal is less than a masking value according to a psychoacoustic model to encode the first sinusoidal signal, difference coding for a third sinusoidal signal of a next frame, which is connected to the first sinusoidal signal, is performed using a sinusoidal signal or sinusoidal signals selected according to a method to use the particular code, and a decoding apparatus obtains a sum with a transmitted difference using the selected sinusoidal signal(s).
摘要:
Coding of an audio signal (x) represented by a respective set of sampled signal values (x(t)) for each of a plurality of sequential time segments is disclosed. The sampled signal values are analyzed to determine one or more sinusoidal components for each of the plurality of sequential segments. The sinusoidal components are linked across a plurality of sequential segments to provide sinusoidal tracks, where each track comprises a number of frames. An encoded signal (AS) is generated, including sinusoidal codes (Cs) comprising a representation level (r) for each frame or including sinusoidal codes (Cs) where some of these codes comprise a phase (ϕ), a frequency (ω) and a quantization table (Q) for a given frame when the given frame is designated as a random-access frame. The invention allows random access in a track while avoiding long adaptation of the quantization accuracy in a quantizer and/or the need for a large bit stream while still maintaining improved audio quality.