摘要:
A flat panel display comprising: a backplate structure (330) comprising (a) a backplate (331), (b) an electron emitting structure (332) overlying the backplate and having electron-emission sites (361-365) situated generally in an emission-site plane (303), and (c) a primary structure (334) overlying the backplate and having a non-planar approximately equipotential surface extending generally along the emission-site plane at a distance therefrom which varies between first and second values (d b ,d s ), the backplate structure having an electrical end located in an electrical-end plane (304) extending generally parallel to the emission-site plane at a distance therefrom which lies between the first and second values; a faceplate structure (320) coupled to the backplate structure to form a sealed enclosure; and a spacer (340) situated between the backplate structure and the faceplate structure for resisting external forces exerted on the display, the spacer having a backplate-side electrical end situated along the primary structure at a location spaced apart from the electrical-end plane, the spacer being provided with compensation structure for controlling the potential field along the spacer so that electrons emitted by the electron emitting structure strike target areas on the faceplate structure rather than striking outside the target areas due to the spacer's backplate-side electrical end being spaced apart from the electrical-end plane.
摘要:
A flat panel display comprising: a faceplate structure; a backplate structure having an electron emitting structure; a focusing structure having a first surface coupled to the electron emitting structure and a second surface which extends away from the electron emitting structure, the focusing structure and the electron emitting structure having an electrical end between the first and second surfaces of the focusing structure; a spacer located between the focusing structure and the faceplate structure, the spacer having an electrical end located above the electrical end of the focusing structure and the electron emitting structure; a face electrode located an a face surface of the spacer; and
means for controlling the voltage of the face electrode to create, adjacent to the face electrode, a voltage distribution which compensates for the voltage distribution caused by the electrical end of the spacer being located above the electrical end of the focusing structure and the electron emitting structure, the controlling means comprising (a) a first edge electrode located at a first edge surface of the spacers, extending along only part of the first edge surface, and contacting the backplate structure and (b) a second edge electrode located at a second edge suface of the spacer and contacting the faceplate structure.
摘要:
A flat panel display having a backplate structure (330), a faceplate structure (320), and a spacer (340) situated between the two plate structures is configured so that the electric potential field along the spacer approximates the potential field that would be present at the same location in free space, i.e., in the absence of the spacer, between the two plate structures. Consequently, the presence of the spacer does not significantly affect the trajectories of electrons moving from the backplate structure to the faceplate structures. Alternatively, the spacer is arranged to produce electron deflection that largely compensates for undesired electron deflection which occurs during earlier electron travel from the backplate structure to the faceplate structure. The net electron deflection is small.
摘要:
A multi-level conductive matrix structure for separating rows (106, 108) and columns (110-122) of sub-pixels on a faceplate (104) of a flat panel display device is disclosed. The matrix structure has a first plurality of parallel spaced apart conductive ridges having a height, a second plurality of parallel spaced apart conductive ridges having a height higher than the height of the first plurality of conductive ridges, and the height of second conductive ridges decreases to the height of first conductive ridges at intersections of the first and second conductive ridges.
摘要:
An image forming apparatus using an electron source which has matrix-wired electron-emitting devices connected with wiring electrodes of conductive material, and a fluorescent member as an image forming member with an accelerating electrode on its inner surface side, opposite to the electron-emitting devices. The wiring electrodes includes a wiring electrode having a concave portion wherein a support member (spacer) is attached with a conductive connection member therebetween.
摘要:
A flat panel display comprising: a backplate structure comprising (a) a backplate, (b) an electron emitting structure overlying the backplate and having electron-emission sites situated generally in an emission-site plane, and (c) a primary structure overlying the backplate and having a non-planar approximately equipotential surface extending generally along the emission-site plane at a distance therefrom which varies between first and second values, the backplate structure having an electrical end located in an electrical-end plane extending generally parallel to the emission-site plane at a distance therefrom which lies between the first and second values; a faceplate structure coupled to the backplate structure to form a sealed enclosure; and a spacer situated between the backplate structure and the faceplate structure for resisting external forces exerted on the display, the spacer having a backplate-side electrical end situated along the primary structure at a location spaced apart from the electrical-end plane, the spacer being provided with compensation structure for controlling the potential field along the spacer so that electrons emitted by the electron emitting structure strike target areas on the faceplate structure rather than striking outside the target areas due to the spacer's backplate-side electrical end being spaced apart from the electrical-end plane.
摘要:
A field emission display (100) includes a dielectric layer (132) having a plurality of emitter wells (134), a plurality of electron emitters (136) disposed one each within the plurality of emitter wells (134), a plurality of conductive rows (138, 140, 142) disposed on the dielectric layer (132) and having sacrificial portions (154), and ion shield (139) disposed on the dielectric layer (132) and spaced apart from the sacrificial portions (154) of the plurality of conductive rows (138, 140, 142), and an anode (121) opposing the plurality of electron emitters (136) and defining a projected area (122) at the plurality of conductive rows (138, 140, 142). The sacrificial portions (154) of the plurality of conductive rows (138, 140, 142) extend beyond the projected area (122) of the anode (121).
摘要:
A flat panel display having a backplate structure (330), a faceplate structure (320), and a spacer (340) situated between the two plate structures is configured so that the electric potential field along the spacer approximates the potential field that would be present at the same location in free space, i.e., in the absence of the spacer, between the two plate structures. Consequently, the presence of the spacer does not significantly affect the trajectories of electrons moving from the backplate structure to the faceplate structures. Alternatively, the spacer is arranged to produce electron deflection that largely compensates for undesired electron deflection which occurs during earlier electron travel from the backplate structure to the faceplate structure. The net electron deflection is small.
摘要:
A method for reducing charge accumulation in a field emission display (100) includes the steps of causing a plurality of electron emitters (114) to emit electrons (132) to reduce the potential at an anode (124) of the field emission display (100). Upon the reduction of the potential at the anode (124), the electrons (132) neutralize a positively electrostatically charged surface (129) of a spacer (130). The anode potential is dropped by providing a resistor (127) in series with a voltage source (126) connected to the anode (124). The anode potential is reduced by causing the electron emitters (114) to emit simultaneously to provide a pull-down current (128) at the anode (124). The voltage at the anode (124) is reduced to a value that causes a sufficient flux of electrons (132) to be attracted to the charged surfaces (129) for neutralizing them.
摘要:
A field emission display (100) includes a dielectric layer (132) having a plurality of emitter wells (134), a plurality of electron emitters (136) disposed one each within the plurality of emitter wells (134), a plurality of conductive rows (138, 140, 142) disposed on the dielectric layer (132) and having sacrificial portions (154), and ion shield (139) disposed on the dielectric layer (132) and spaced apart from the sacrificial portions (154) of the plurality of conductive rows (138, 140, 142), and an anode (121) opposing the plurality of electron emitters (136) and defining a projected area (122) at the plurality of conductive rows (138, 140, 142). The sacrificial portions (154) of the plurality of conductive rows (138, 140, 142) extend beyond the projected area (122) of the anode (121).