Abstract:
A spectrometer for identifying a mixture is provided. The spectrometer includes a detector configured to generate a signal based on an interaction of light with a sample of the mixture, and a memory device having a library and a correlation matrix stored therein, wherein the library includes a plurality of spectra, each spectrum associated with a respective compound, and wherein the correlation matrix includes a correlation between each possible pair of spectra in the library. The spectrometer further includes a processor coupled to the memory device and configured to determine a spectrum of the mixture based on the signal generated by the detector, calculate a correlation vector that includes a correlation between the mixture spectrum and each spectrum in the library, and identify the mixture based on the correlation matrix and the correlation vector.
Abstract:
Correlation spectroscopy measure is improved by correcting for cross interference. This is achieved through applying different gains to the output signals whereby the effect of background interferent species can be calculated and an automatic correction factor applied.
Abstract:
The invention relates to a mobile remote detection device for accumulations of methane, comprising an emitter device having a light source in order to generate air, the wave length of said light source being synchronised with the spectral signature of methane, whereby the light can be directed towards a measuring field. Said detection device also comprises a detector device for detecting backscattered light, and an evaluation device. The aim of the invention is to improve said remote detection device in such a manner that it has a high degree of measuring sensitivity with a compact and stabile structure. According to the invention, the light source generates light at a wave length of between 3200nm and 3300nm at which methane is absorbed and the light source has an optical parametric oscillator with seed-injection, said oscillator being associated with a pump laser which is operated in seed-injection mode.
Abstract:
Ein optischer Gasmelder für den Nachweis von Substanzen, welche bei einer Wellenlänge von 11 ± 2 µm absorbieren, enthält eine Lichtquelle (10), eine Messzelle (6) mit einem Messfilter (11), eine Referenzzelle (7) mit einem Referenzfilter (12), und eine Auswerteelektronik. Das Referenzfilter (12) hat einen Durchlassbereich, welcher an ein mögliches Störgas angepasst ist. Vorzugsweise weist das Messfilter (11) einen Durchlassbereich von 11 ± 2 µm und das Referenzfilter (12) einen vom Messfilter (11) verschiedenen Durchlassbereich auf, wobei der letztere im Wellenlängenbereich von 7.2 µm bis 8.7 µm und/oder von 3.02 µm bis 4.0 µm liegt.
Abstract:
In dem Verfahren und der Vorrichtung zur Bestimmung von Diffusionsparametern, Konzentration, Größe oder Strömungsverhalten von Partikeln in einer Probe, werden Anregungslicht einer Lichtquelle in die Probe geleitet, Raman-Streulicht aus einem Beobachtungsvolumen der Probe aufgefangen und einem Spektrographen zugeführt wird, wo es in Spektrallinien zerlegt wird, wobei die Intensität mindestens einer Spektrallinie mindestens 10 mal pro Sekunde mit jeweils einem Photodetektor gemessen wird, und aus den gemessenen Intensitätswerten für die jeweilige Spektrallinie durch eine Fluktuationsanalyse, vorzugsweise eine Autokorrelation oder eine Frequenzanalyse, Diffusionsparameter, Konzentration, Größe oder Strömungsverhalten der Partikel, denen die jeweilige Spektrallinie zuzuordnen ist, berechnet. Bei diesem Verfahren können auch Signale verschiedener Spektrallinien oder -banden oder Signale von Raman-Streulicht, quasielastisch gestreutem Licht und Fluoreszenzlicht miteinander korreliert werden.
Abstract:
Research octane number (RON), or other physical or chemical properties or composition data, of a test sample is obtained by infrared spectral analysis of the test sample and a calibration sample set. The determination of the above properties is improved by using the spectrum of the test sample, a linear prediction model, and a nonlinear correction to the linear prediction model.
Abstract:
The present disclosure relates to a method of quantitatively analyzing fluorescence dyes labeled on extracellular vesicles by using fluorescence correlation spectroscopy and use thereof, in which the number of the labeled fluorescence dyes per extracellular vesicle can be quantified, and thus the labeling efficiency of the fluorescence dyes can be accurately measured. In addition, extracellular vesicles included in an unidentified sample can be quantified using fluorescence dyes of which the labeling efficiency has been measured, and more accurate biodistribution experimental results can be obtained. Thus, the extracellular vesicles can be used to evaluate a therapeutic candidate material and can also be used in the quantification of a target protein in vivo, and thus can be widely used.
Abstract:
A dispersion measurement apparatus 1A includes a pulse forming unit 3, a correlation optical system 4, a photodetection unit 5, and an operation unit 6. The pulse forming unit 3 forms a light pulse train Pb including a plurality of light pulses having time differences and center wavelengths different from each other from a measurement target light pulse Pa output from a pulsed laser light source 2. The correlation optical system 4 receives the light pulse train Pb output from the pulse forming unit 3 and outputs correlation light Pc including a cross-correlation or an autocorrelation of the light pulse train Pb. The photodetection unit 5 detects a temporal waveform of the correlation light Pc output from the correlation optical system 4. The operation unit 6 estimates a wavelength dispersion amount of the pulsed laser light source 2 based on a feature value of the temporal waveform of the correlation light Pc. Thus, a dispersion measurement apparatus, a pulsed light source, a dispersion measurement method, and a dispersion compensation method capable of measuring a wavelength dispersion by a simple configuration are realized.
Abstract:
The invention relates to a spectroscopy array having a first and a second optical ring resonator (1, 3), each provided with a material having an intensity-dependent refraction index. The spectroscopy array further comprises at least one waveguide (2, 4, 7, 8), which is guided along the optical ring resonator at a distance such that the light of a continuous beam laser (2b, 4b, 20) guided in the waveguide (2, 4, 7) can be coupled into the optical ring resonator (1, 3), and a frequency comb generated from the light of the continuous beam laser in the optical ring resonator can be coupled out of the waveguide (2, 4, 8). The optical ring resonators (1, 3) and the at least one waveguide (2, 4, 7, 8) are provided on a shared substrate (9).