Abstract:
Embodiments provide an optical sensor head and method of making an optical sensor head. In some cases the sensor head can be used as a fluorometric sensor to measure concentrations of substances within a liquid sample of interest. The sensor head includes a light source window and a detector window that transmit light between the sensor head and an analytical area. In some cases the windows include a ball lens positioned within a channel such that the ball lens and the channel create a seal between the interior and exterior of the sensor head.
Abstract:
Embodiments of the present invention are directed to systems (100) and methods of predicted a welding property (600) for a given welding operation using at least one electrode. Embodiments determine a predicted weld deposit property and compare the predicted property to a desired property to determine whether or not a selected electrode for the given welding operation can achieve the desired weld deposit.
Abstract:
The technology disclosed herein may be used to detect drugs with potential for abuse within a human subject. This technology may be particularly useful to discriminate between drugs of abuse, corresponding psychoactive compounds, and corresponding metabolite byproducts, which are often closely related and possess similar chemical structures. The disclosed technology uses infrared light reflectance characteristics particular to one or more chemical compounds to be detected for identification of those compounds within the human subject.
Abstract:
This relates to systems and methods for measuring a concentration and type of substance in a sample at a sampling interface. The systems can include a light source, optics, one or more modulators, a reference, a detector, and a controller. The systems and methods disclosed can be capable of accounting for drift originating from the light source, one or more optics, and the detector by sharing one or more components between different measurement light paths. Additionally, the systems can be capable of differentiating between different types of drift and eliminating erroneous measurements due to stray light with the placement of one or more modulators between the light source and the sample or reference. Furthermore, the systems can be capable of detecting the substance along various locations and depths within the sample by mapping a detector pixel and a microoptics to the location and depth in the sample.
Abstract:
Embodiments provide a handheld optical measuring device and method of measuring an optical property of a liquid sample. In some embodiments the optical measuring device includes a handheld controller module having an immersible sensor head and a sampling member including a sample cup and an attachment member that couples the sample cup to the handheld controller module. In some embodiments the attachment member is an elongated rigid member that is hingedly coupled to the controller module, thus providing a folding configuration for enclosing the sensor head with the sample cup during measurements, transportation, and/or storage. In some embodiments the attached sample cup provides a protective shell for the immersible sensor head during use and/or when not in use.
Abstract:
The present invention relates to an optical system for imaging using a camera and a light source of a handheld device, wherein the optical system comprises a transparent optic defining an optical volume, the transparent optic comprising a first main face adapted for positioning an object to be imaged, the transparent optic adapted to admit into the optical volume a light emitted by the light source for illuminating the object and wherein the transparent optic is adapted to admit the light having interacted with the object into the optical volume and turn the light inside the optical volume such that the light is internally reflected within the optical volume and exit the optical volume to be incident onto the camera.
Abstract:
A portable device for detecting an analyte associated with a target organic molecule in a liquid and/or solid substance. The device includes a test chamber, a probe, and a sensor. The test chamber contains a liquid volume of test solution including an analytical reagent selected to react with the analyte. The test chamber is sealed by a pierceable membrane wall. The probe is removably positionable to pierce the membrane wall to deposit a sample in the test chamber to form a test mixture with the test solution. The sensor is positioned to detect one or more characteristics of the test mixture in the test chamber indicative of a reaction between the analyte and the analytical reagent.
Abstract:
A gas detector (10) that is arranged to sense the concentration levels of target gases oxygen, methane, carbon monoxide, and hydrogen sulphide, within a gas sample from an environment surrounding the detector. The gas detector (10) comprises laser sources (12a-12d) that are arranged to transmit radiation through the gas sample at four target wavelengths that correspond approximately to the optimum absorption wavelengths of each of the target gases and an optical detector (16) that is arranged to sense the intensity of the radiation transmitted through the gas sample at each of the target wavelengths. A control system (22) generates representative concentration level information for the target gases based on the level of absorption of the radiation transmitted.
Abstract:
The disclosure provides a portable Raman device that includes a laser for emitting exciting light; a spectrometer for receiving Raman scattered light and converting the Raman scattered light into an electrical signal after beam splitting; a probe for leading the exciting light to irradiate on a sample and collect the Raman scattered light of the sample; and a fiber system connected between the laser and the probe as well as between the probe and the spectrometer so as to conduct light transmission. In comparison to conventional Raman devices, the portable Raman device of the disclosure has a simplified optical system, such that placement of components of the Raman device are more flexible, the whole size of the Raman device is reduced, and thus requirements of size miniaturization and quick real-time measurement are satisfied.
Abstract:
A urinalysis device including a device body having a port for electronic communication with a handheld computing device and holding a test strip for insertion into urine and collecting a sample. A method of using the urinalysis device with a handheld computing device, by taking a urine sample, electronically coupling the urinalysis device to the handheld computing device through the port, obtaining raw data a test strip within the urinalysis device, sending the raw data to the handheld computing device, and further analyzing the raw data. An Application and method of use with a urinalysis device, including a power providing mechanism for recognizing and providing power to the urinalysis device, a data accepting mechanism for accepting raw data from the urinalysis device, a data correcting mechanism for converting and correcting raw data from the urinalysis device to results, and a reporting mechanism for populating a reporting form with results.