摘要:
Provided is a wastewater treatment process capable of selectively and efficiently separating and removing a manganese precipitate with high purity from sulfuric acid-acidic wastewater containing aluminum, magnesium, and manganese. In the wastewater treatment for a sulfuric acid-acidic wastewater containing aluminum, magnesium, and manganese, a magnesium oxide is used for part or all of the neutralizing agent to be added, the magnesium oxide is produced through the following steps (1) to (4): (1) effluent wastewater obtained by separating aluminum and manganese from sulfuric acid-acidic wastewater is concentrated, and calcium contained in the effluent wastewater is precipitated as a calcium sulfate; (2) the solution obtained in (1) is further concentrated, and magnesium is precipitated and separated as a magnesium sulfate; (3) the magnesium sulfate separated in (2) is roasted together with a reducing agent to obtain a magnesium oxide and sulfurous acid gas; and (4) the magnesium oxide obtained in (3) is washed.
摘要:
A method for reducing impurities in magnesium comprises: combining a zirconium-containing material with a molten low-impurity magnesium including no more than 1.0 weight percent of total impurities in a vessel to provide a mixture; holding the mixture in a molten state for a period of time sufficient to allow at least a portion of the zirconium-containing material to react with at least a portion of the impurities and form intermetallic compounds; and separating at least a portion of the molten magnesium in the mixture from at least a portion of the intermetallic compounds to provide a purified magnesium including greater than 1000 ppm zirconium. A purified magnesium including at least 1000 ppm zirconium and methods for producing zirconium metal using magnesium reductant also are disclosed.
摘要:
A method of producing a refractory metal powder that includes providing a metal powder containing magnesium tantalate or magnesium niobate; and heating the powder in an inert atmosphere in the presence of magnesium, calcium and/or aluminum to a temperature sufficient to remove magnesium tantalate or magnesium niobate from the powder and/or heating the powder under vacuum to a temperature sufficient to remove magnesium tantalate or magnesium niobate from the powder, the heating steps being performed in any order. The metal powder can be formed into pellets at an appropriate sintering temperature, which can be formed into electrolytic capacitors.
摘要:
The present description relates to a process for producing magnesium metal from dihydrate magnesium chloride comprising the steps of dehydrating MgCI2.2H2O with anhydrous hydrochloric acid (HCI) to obtain anhydrous magnesium chloride in an inert environment, releasing the mixture of hydrous HCI and protection gas; and electrolyzing the anhydrous magnesium chloride in an electrolytic cell fed with hydrogen gas under free oxygen atmosphere content, wherein magnesium metal and anhydrous hydrogen chloride are produced, wherein a part of the hydrous HCI is passed through a scrubbing unit to obtain a hydrochloric acid solution, the other part of the hydrochloric chloride gas is dehydrated by contact with a desiccant agent in a drying unit to produce anhydrous HCI, and wherein the anhydrous HCI produced by at least one of the electrolytic cell and the drying unit is reused to dehydrate the of MgCI2.2H2O.
摘要:
A method of separating cobalt and magnesium from a nickel-bearing extraction feed solution (1) with liquid-liquid extraction, wherein a first extraction solution (2) contains cation-exchange extraction reagent insoluble or poorly soluble in said feed solution (1). The method comprises at least the following method stages enabling cobalt, magnesium and nickel to be separated into discrete aqueous solution streams: - in an extraction stage (A), the cobalt-, magnesium- and nickel-containing extraction feed solution (1) is extracted with the first extraction solution (2) for providing a cobalt-, magnesium- and nickel-loaded second extraction solution (4) and a primarily nickel-containing raffinate (3), - in a washing stage (B), the cobalt-, magnesium- and nickel-loaded second extraction solution (4) is washed in a countercurrent fashion with a primarily cobalt- and sulfuric acid-containing first washing solution (5) whose pH is 0,5-5 for providing a primarily cobalt- and magnesium-loaded third extraction solution (7) and a primarily nickel-containing first wash water (6), - in a washing stage (C), the primarily cobalt- and magnesium-loaded third extraction solution (7) is washed in a countercurrent fashion with a water-, cobalt-and sulfuric acid-containing second washing solution (8) whose pH is 0,5-5 for providing a primarily cobalt-loaded fourth extraction solution (10) and a primarily magnesium-containing second wash water (9).
摘要:
The present description relates to a process for extracting magnesium compounds from magnesium-bearing ores comprising leaching serpentine tailing with dilute HCl to dissolve the magnesium and other elements like iron and nickel. The resudial silica is removed and the rich solution is further neutralized to eliminate impurities and recover nickel. Magnesium chloride is transformed in magnesium sulfate and hydrochloric acid by reaction with sulfuric acid. The magnesium sulfate can be further decomposed in magnesium oxyde and sulphur dioxyde by calcination. The sulphur gas can further be converted into sulfuric acid.