Abstract:
PURPOSE: A method for fabricating molecular imprinted polymer nanotube is provided to obtain a membrane for enabling chemical separation using a composite which is composed of a hard template and the molecular imprinted polymer nanotube using a separation membrane. CONSTITUTION: A method for manufacturing molecular imprinted polymer nanotube comprises the following steps: manufacturing a solution by mixing a template molecule and a monomer which is capable of chemically combining with the template molecule; manufacturing the molecular imprinted polymer nanotube by introducing the solution to a hard template and introducing a crosslinking agent using a vapor deposition method; eliminating the template molecule from the molecular imprinted polymer nanotube; and applying the composite comprising the template molecule and the molecular imprinted polymer nanotube to a separation membrane which is capable of selectively separating the template molecule.
Abstract:
PURPOSE: The fabrication of functional polymer nanoparticle/nanotube structure in a hard template and the application of the same as a protein immobilization membrane are provided to use a surfactant solution and vapor-deposition polymerization. CONSTITUTION: The fabrication of functional polymer nanoparticle/nanotube structure includes the following: A solution is prepared by mixing a surfactant and an oxidizing agent. The surfactant forms a nanoparticle structure. The oxidizing agent polymerizes monomers. The solution is introduced in a hard template. The monomers are introduced through a vapor deposition method. A polymer nanoparticle structure is prepared in a polymer nanotube. A functional polymer nanotube/nanoparticle structure is prepared through additional polymerization processes.
Abstract:
PURPOSE: A manufacturing method of a mesopore silica nanofiber catalyst is provided to be applied with various organic combination reactions of high efficiency catalysts, and to control catalytic activity by modifying structure of mesopore. CONSTITUTION: A manufacturing method of a mesopore silica nanofiber catalyst comprises the following steps; a step of manufacturing the mesopore silica nanofiber by adopting a silica precursor as a gas phase after a surfactant solution of 2 kinds is introduced to a hard mold; a step of collecting the manufactured mesopore silica nanofiber; a step of introducing catalyst reaction site by using a silane coupling agent in the collected mesopore silica nanofiber; and a step of adjusting structure of mesopore silica nanofiber.
Abstract:
PURPOSE: The fabrication of functional polymer nanoparticle/nanotube structure in a hard template and the application of the same as a protein immobilization membrane are provided to use a surfactant solution and vapor-deposition polymerization. CONSTITUTION: The fabrication of functional polymer nanoparticle/nanotube structure includes the following: A solution is prepared by mixing a surfactant and an oxidizing agent. The surfactant forms a nanoparticle structure. The oxidizing agent polymerizes monomers. The solution is introduced in a hard template. The monomers are introduced through a vapor deposition method. A polymer nanoparticle structure is prepared in a polymer nanotube. A functional polymer nanotube/nanoparticle structure is prepared through additional polymerization processes.
Abstract:
본 발명은 계면활성제 용액과 기상증착 반응을 이용하여 경질 주형 안에서 실리카 나노 튜브 안에 실리카 나노 입자가 고정되어 있는 구조를 단일 단계의 공정에 의하여 제조하는 방법에 관한 것으로, 서로 다른 구조인 나노 튜브와 나노 입자를 동시에 제조할 수 있을 뿐만 아니라, 나노 튜브 안에 나노 입자가 고정되어 있는 구조를 여러 단계에 걸쳐서 제조하지 않고 단일 단계의 공정으로 제조할 수 있는 방법을 제시한다. 본 발명에 따르면, 계면활성제 용액과 기상증착 반응을 이용하여 단일 단계의 공정으로 제조하기 때문에 간단하게 실리카 나노 튜브/나노 입자 복합체를 제조할 수 있다는 장점을 가진다. 더욱이 기상증착 반응의 시간을 조정하여 입자의 밀도를 조절할 수 있다. 실리카, 나노 튜브, 나노 입자, 나노구조체
Abstract:
PURPOSE: A producing method of a copolymer nanotube membrane reactor with glucose oxidase is provided to use a copolymer nanotube/glucose oxydase composite as a membrane reactor for decomposition glucose in a glucose aqueous solution. CONSTITUTION: A producing method of a copolymer nanotube/glucose oxydase composite capable of using as a membrane reactor comprises the following steps: inserting an initiator into an anodized aluminum hard mold; inserting two gaseous monomers into the hard mold from a vapor deposition polymerization reactor for obtaining a copolymer nanotube; applying a functional group into the copolymer nanotube; and combining glucose oxidase with the inside of the copolymer nanotube.
Abstract:
PURPOSE: A manufacturing method of silica nanotube and nanoparticle is provided to manufacture a nanotube and nanoparticle at the same time through one step process by using a surfactant solution and a vapor deposition reaction. CONSTITUTION: The manufacturing method of silica nanotube/nanoparticle includes following steps.(a) The surfactant solution 'capable of forming a nanoparticle structure' and an acid solution generating a hydrolysis- condensation reaction of a silica precursor are mixed. The surfactant solution is manufactured.(b) The surfactant solution is introduced to a hard template.(c) The silica precursor is reacted to the hard template, in which 'the surfactant solution is introduced' through the vapor deposition method. The silica nanotube / nanoparticle structure is manufactured with the one step process.(d) The silica nanotube / nanoparticle is obtained by eliminating the hard template. The kind of the surfactant is P65, P84, P103, P123 and their mixture.
Abstract:
본 발명은 경질 주형 안에서 제조된 메조 기공 실리카 나노 섬유의 촉매로의 응용에 관한 것으로서, 경질 주형 안에서 메조 기공 실리카 나노 섬유에 촉매 역할을 할 수 있는 관능기를 도입하고, 이를 다양한 유기 합성 반응의 고 효율 촉매로써의 응용이 가능한 메조 기공 실리카 나노 섬유를 제조하는 방법을 제공한다. 본 발명에 따르면, 제조된 메조 기공 실리카 나노 섬유에 다양한 관능기를 도입할 수 있으므로, 다양한 반응에 응용될 수 있는 이종 촉매 (heterogeneous catalyst)를 제조할 수 있으며, 촉매 회수를 통하여 재활용 할 수 있다. 또한, 높은 표면적과 기공에의 접근성이 용이 하므로, 이종 촉매 (heterogeneous catalyst)의 단점인 반응 속도 측면을 획기적으로 개선할 수 있으며, 메조 기공 실리카 나노 섬유의 메조 기공 구조를 조절함에 따라, 촉매의 활성도를 조절할 수 있다. 실리카, 메조기공, 이종 촉매, 나노 섬유, 경질 주형