摘要:
본 발명에 의한 피에이치 증가를 위한 소주용 마그네슘계 분말은, 소주와 반응하여 7.4pH를 초과하는 소주의 제조가 가능하며, 본 발명에 의한 피에이치 증가를 위한 소주용 마그네슘계 분말을 이용하여 피에이치가 증가된 소주는, 38㎛ 내지 299㎛의 입자크기를 가지는 마그네슘(Mg) 또는 마그네슘 수소화합물(MgH 2 )이 채택되는 소주용 마그네슘계 분말과 반응하여 7.4를 초과하는 pH를 갖는 것을 특징으로 한다.
摘要:
본 발명에 의한 마그네슘 수소화합물 분말은, 55 내지 95중량%의 마그네슘(Mg) 분말과, 5 내지 45중량%의 마그네슘 수소화합물(MgH 2 ) 분말과, 밀링용 볼을 수소 분위기의 볼밀링용기 내부에 장입하고 볼밀링한 후 300 내지 500℃의 온도에서 5 내지 50기압의 압력으로 가압 열처리하여 형성된다. 본 발명에 의한 볼밀링된 마그네슘 분말의 수소가압 열처리에 의한 마그네슘 수소화합물의 제조방법은, 55 내지 95중량%의 마그네슘(Mg) 분말과, 5 내지 45중량%의 마그네슘 수소화합물(MgH 2 ) 분말을 준비하는 분말준비단계와, 상기 마그네슘(Mg) 분말과 마그네슘 수소화합물(MgH 2 ) 분말 및 밀링용볼을 볼밀링용기에 장입한 후 수소 분위기를 조성하는 분위기조성단계와, 상기 마그네슘(Mg) 분말과 마그네슘 수소화합물(MgH 2 ) 분말을 볼밀링하는 볼밀링단계와, 볼밀링된 분말을 수소분위기에서 가압 열처리하여 마그네슘 수소화합물 분말을 제조하는 분말완성단계로 이루어진다.
摘要:
PURPOSE: Magnesium hydride powder and a method for manufacturing the same are provided to restrict the unnecessary introduction of impurities into the magnesium hydride powder. CONSTITUTION: A method for manufacturing magnesium hydride powder includes the following: 5 to 50 weight% of magnesium powder and 50 to 95 weight% of magnesium hydride powder are prepared(S100); the magnesium powder, the magnesium hydride powder, a milling ball are introduced into a ball milling container; hydrogen atmosphere is generated(S200); the magnesium powder and the magnesium hydride powder are ball-milled(S300); and the ball-milled powder is heat-treated under pressures in the hydrogen atmosphere to obtain magnesium hydride powder.
摘要:
PURPOSE: A ball milling container is provided to prevent rapid loss of gas contained inside and improve product quality. CONSTITUTION: A ball milling container comprises: a container main body(120) having a chamber containing ingredient powder, ball, and gas; a lid(140) having a first gas injection part(144) and a first gas discharge part(146); and a sealing cap(160) having a sealed space(166) by containing the first gas injection part and gas discharge part inside. The container main body has a sealer(126) at the upper end portion. The sealer enhances sealing force of the chamber by contacting the lower surface of the lid and the upper end portion of the container main body in case of binding the lid and container main body.
摘要:
A method for preparing oxides is provided to produce economically the oxides having a high specific surface area by a simple production process. A method for preparing oxides having a specific surface area of 13.9 m^2/g includes the steps of: adding any one, or two or more oxides selected from the group comprising niobium oxide, vanadium oxide, aluminum oxide, magnesium oxide, chrome oxide, iron oxide, and manganese oxide to a brine, and drying the admixture in order to coat the surface of the oxide with salt evenly; and adding water to the milled oxide powder to dissolve salt in water, removing the brine to obtain oxide powder, and drying the oxide powder.
摘要:
본 발명은 구리상을 함유한 리튬 이차전지 음극용 나노 활물질을 제조하는 방법에 관한 것이다. 본 발명에 따른 구리상을 함유한 리튬 이차전지 음극용 나노 활물질을 제조하는 방법은400 nm이하의 입자를 갖는 주석, 코발트, 코발트-탄소계, 실리콘, 마그네슘, 실리콘 산화물 또는 코발트 산화물 분말 중 1종 이상을 함유하는 분말을 준비하는 단계와; 구리를 함유하는 염을 유기용제나 물에 녹여 용액을 제조하고, 그 용액에 상기 분말을 투입하여 이들을 혼합하고 건조하는 단계와; 상기 단계에서 혼합한 물질을 환원성 분위기에서 200~600℃ 사이의 온도로 열처리하여 구리함량이 5중량% 내지 35중량%인 구리상을 함유한 나노 분말을 제조하는 단계;를 포함하는 것을 특징으로 한다. 본 발명에 의하여 구리상을 함유한 리튬 이차전지 음극용 나노 활물질을 제조하면, 전지의 사이클 특성을 개선하는 효과가 있다. 리튬 이차전지, 음극재료, 활물질, 나노, 복합분말, 사이클 특성
摘要:
Provided is a method for fabricating nano-sized active materials containing a copper phase for a negative electrode of a lithium secondary battery, which improves cycle characteristics and charge/discharge capacities of the battery. The method for fabricating nano-sized active materials containing a copper phase comprises the steps of: preparing powder containing at least one of tin, cobalt, cobalt-carbon, silicon, magnesium, silicon oxide or cobalt oxide powders, which have particles of 400 nm or less; dissolving a salt containing copper into an organic solvent or water to prepare a solution and adding the solution to the powder, followed by mixing and drying; and performing heat treatment of the mixture under a reducing atmosphere to prepare nano powder containing a copper phase.
摘要:
A method for manufacturing a sintered cemented carbide alloy containing cobalt or a sintered diamond alloy containing cobalt more economically by mixing such a Co-based powder with carbide powder or diamond powder and molding and sintering the mixture after preparing a Co-based powder by recycling waste catalyst scraps containing desulfurizing cobalt is provided. A method for manufacturing a sintered alloy containing cobalt comprises the steps of: crushing catalyst scrapes; heat-treating the crushed catalyst scrapes at a temperature of 600 to 1000 deg.C under the atmospheric atmosphere to manufacture a Co-based oxide powder; heat-treating the Co-based oxide powder at a temperature of 750 to 1000 deg.C under the reductive atmosphere to obtain a Co-based powder; and mixing the Co-based powder, WC as a principal constituent, and at least one carbide powder of Cr3C2, VC, TiC, TaC, and NbC as an additive, molding the mixture, and sintering the molded mixture at a temperature of 1320 to 1470 deg.C under vacuum.
摘要翻译:通过将这种Co基粉末与碳化物粉末或金刚石粉末混合,并且通过再循环废料制备Co基粉末后模制和烧结混合物,从而经济地制造含有钴或烧结金刚石合金的钴或烧结金刚石合金的烧结硬质合金的方法 提供含有脱硫钴的催化剂废料。 含有钴的烧结合金的制造方法包括以下步骤:粉碎催化剂刮擦; 在大气气氛下,在600〜1000℃的温度下对破碎的催化剂进行热处理,制造Co基氧化物粉末; 在还原气氛下,在750〜1000℃的温度下对Co系氧化物粉末进行热处理,得到Co系粉末; 将作为主要成分的Co基粉末和作为添加剂的Cr 3 C 2,VC,TiC,TaC,NbC的至少一种碳化物粉末混合,将该混合物成型,并将该模塑混合物在1320℃的温度下烧成 真空下1470℃。
摘要:
PURPOSE: To provide a method for preparing nano sized TaC-transition metal based composite powder used in hard metal cutting tools through dispersion of ta contained raw material and transition metal contained water soluble salt into solvent. CONSTITUTION: The method comprises a step of obtaining precursor powder by spray drying the stirred raw material after stirring the solution by dispersing Ta contained raw material and transition metal contained water soluble salt into solvent; a step of preparing ultra-fine Ta-transition metal composite oxide powder by calcining the precursor powder; a step of obtaining composite oxide powder by drying the mixture after mixing nano sized carbon particle with the ultra-fine Ta-transition metal composite oxide powder; and a step of reducing and carburizing the dried composite oxide powder at a non-oxidative atmosphere.