LNG냉열이용 팽창기체 흡입식 공기액화장치
    1.
    发明授权
    LNG냉열이용 팽창기체 흡입식 공기액화장치 有权
    使用液化天然气冷却能力的液化天然气液化系统与喷射器膨胀装置进入膨胀蒸汽

    公开(公告)号:KR101669729B1

    公开(公告)日:2016-10-26

    申请号:KR1020140157893

    申请日:2014-11-13

    Applicant: 강희자

    Inventor: 강희자

    Abstract: 본발명은대기에서유입한원료공기를 LNG의냉열과팽창공기흡입식이젝터팽창기를이용하여액화시킴으로써보다많은액체공기를얻게되고, 산소와질소의분리가불필요하여액화정류탑이제거되는등 액화설비가크게저감되는액체공기제조장치에관한것이다. 본발명의장치구성으로는, 공기를압축시키는압축기; 상기압축기를통과한공기가 LNG냉열에의하여냉각되는 LNG냉열열교환기: 상기 LNG냉열열교환기를통과한공기를중간압력까지팽창시키는제1 이젝터팽창장치; 상기제1 이젝터팽창장치를통과한공기가기체와액체공기로분리되는액기분리기; 분리된기체와액체중에서중간압력의기체공기는제1 이젝터팽창장치로흡입되는공기와배출공기열교환기에서열교환후 압축기로다시되돌아가압축되고; 액체공기는최종압력까지추가팽창되는제2 이젝터팽창장치; 상기제2 이젝터팽창장치를통과하여생산된액체공기가최종저장되는액체공기저장탱크: 그리고저장탱크의찬(Cold) 기체공기는제1 이젝터팽창장치에흡입되는액체공기제조장치가제공된다.

    LNG냉열이용 팽창기체 흡입식 공기액화장치
    4.
    发明公开
    LNG냉열이용 팽창기체 흡입식 공기액화장치 有权
    使用LNG冷能的空气液化系统与喷射器膨胀装置进入膨胀蒸汽

    公开(公告)号:KR1020160057108A

    公开(公告)日:2016-05-23

    申请号:KR1020140157893

    申请日:2014-11-13

    Applicant: 강희자

    Inventor: 강희자

    Abstract: 본발명은대기에서유입한원료공기를 LNG의냉열과팽창공기흡입식이젝터팽창기를이용하여액화시킴으로써보다많은액체공기를얻게되고, 산소와질소의분리가불필요하여액화정류탑이제거되는등 액화설비가크게저감되는액체공기제조장치에관한것이다. 본발명의장치구성으로는, 공기를압축시키는압축기; 상기압축기를통과한공기가 LNG냉열에의하여냉각되는열교환기: 상기열교환기를통과한공기를중간압력까지팽창시키는제1 이젝터팽창장치; 상기제1 이젝터팽창장치를통과한공기가기체와액체공기로분리되는기액분리기; 분리된기체와액체중에서중간압력의기체공기는이젝터흡입공기의온도와열교환후 압축기로다시되돌아압축되고; 액체공기는최종압력까지추가팽창되는제2 이젝터팽창장치; 상기팽창장치를통과하여생산된액체공기가최종저장되는액체공기저장탱크: 그리고저장탱크의찬(Cold) 기체공기는제1 이젝터팽창기에흡입되는액체공기시스템이제공된다.

    Abstract translation: 本发明涉及一种用于制造液体空气的装置,其中使用LNG冷能液体从空气流出的源空气和膨胀空气抽吸式喷射器膨胀器,从而获得更多的液体空气,并且不需要分离氧气和氮气 ,显着减少液化设施,如去除液化净化塔。 本发明提供一种液体空气系统,包括:用于压缩空气的压缩机; 用于冷却通过压缩机的空气通过LNG冷能的热交换器; 用于将已经通过热交换器的空气膨胀至中压的第一喷射器膨胀器; 用于将已经通过第一喷射器膨胀器的空气分离成气体和液体空气的气液分离器,其中分离的气体和液体,具有中压的气体空气与被空气吸入的空气进行热交换 喷射器返回压缩机,然后由压缩机压缩; 用于另外将液体空气膨胀至最终压力的第二喷射器膨胀器; 以及用于最终储存通过膨胀器产生的液体空气的液体空气存储罐,其中储存罐的冷气体空气被吸入第一喷射器膨胀器中。

    공기 분리 공정에서의 LNG 기반의 액화 장치의생산능력을 높이기 위한 시스템
    7.
    发明公开
    공기 분리 공정에서의 LNG 기반의 액화 장치의생산능력을 높이기 위한 시스템 失效
    在空气分离过程中提高LNG基液化气的能力的系统

    公开(公告)号:KR1020080002673A

    公开(公告)日:2008-01-04

    申请号:KR1020070065173

    申请日:2007-06-29

    Abstract: A process for cryogenic separation of feed air by increasing the capacity of an LNG-based liquefier is provided to perform essential cooling of a product with an increased productivity when at least a part of the product is required to be present in a liquid state, while not increasing the dimension of the liquefier. A process for cryogenic separation of feed air comprises that: (a) the feed air(100) is compressed and impurities are removed from the air, and then the air is supplied to a cryogenic air separation unit(1) including a main heat exchanger and a distillation column system; (b) the feed air is cooled in the main heat exchanger(110); (c) the cooled air(112) is separated in the distillation column system into a nitrogen-enriched stream and oxygen-enriched stream; (d) the distillation column system includes a high-pressure column and a low-pressure column; (e) the feed air is separated in the high-pressure column into a high-pressure nitrogen stream(174) and a crude liquid oxygen stream(158) supplied to the low-pressure column; (f) the low-pressure column separates the crude liquid oxygen stream into an oxygen product stream and a low-pressure nitrogen stream(180); (g) the high-pressure column and the low-pressure column are thermally linked to each other, at least a part of the high-pressure nitrogen is collected at the bottom(sump) of the low-pressure column and condensed in a reboiler/condenser by a boiling oxygen-enriched liquid used as reflux to the distillation column system; and (h) when at least a part of the product is required to be present in a liquid state, a coolant is discharged from liquefied natural gas by feeding nitrogen from the distillation from a liquefier unit for providing essential cooling and nitrogen is compressed through multiple steps by using at least one preliminary compressor and is liquefied via indirect heat exchange with the liquefied natural gas. To increase the capacity of an LNG-based liquefier(2) including a supplementary compressor distinguished from the preliminary compressor, (i) in a low-capacity mode, the nitrogen supplied to the liquefier comprises at least a part of the high-pressure nitrogen, and (ii) in a high-capacity mode, the pressure of at least a part of the low-pressure nitrogen is increased to the pressure of the high-pressure nitrogen to produce pressurized nitrogen as a feeding material for the LNG-based liquefier.

    Abstract translation: 提供通过增加基于LNG的液化器的容量来进一步分离进料空气的方法,以在产品的至少一部分需要以液体状态存在时,以提高生产率进行必要的冷却,同时 不增加液化器的尺寸。 用于进料空气的低温分离的方法包括:(a)进料空气(100)被压缩并从空气中除去杂质,然后将空气供应到包括主热交换器的低温空气分离单元(1) 和蒸馏塔系统; (b)进料空气在主热交换器(110)中冷却; (c)将冷却的空气(112)在蒸馏塔系统中分离成富氮料流和富氧料流; (d)蒸馏塔系统包括高压塔和低压塔; (e)将进料空气在高压塔中分离成高压氮气流(174)和提供给低压塔的粗液氧气流(158); (f)低压塔将粗液氧流分离成氧产物流和低压氮气流(180); (g)高压塔和低压塔彼此热连接,至少部分高压氮在低压塔的底部(集水槽)收集并在再沸器中冷凝 通过用作回流到蒸馏塔系统的沸腾富氧液体的冷凝器; 和(h)当产品的至少一部分需要以液体状态存在时,通过从用于提供基本冷却的液化器单元的蒸馏中输入氮气,从液化天然气排出冷却剂,并且通过多个压缩将氮气压缩 通过使用至少一个初步压缩机的步骤,并通过与液化天然气的间接热交换液化。 为了增加包括与初步压缩机不同的辅助压缩机的基于液化天然气的液化器(2)的容量,(i)在低容量模式下,供应到液化器的氮包括至少一部分高压氮 ,和(ii)在高容量模式下,至少一部分低压氮的压力升高到高压氮的压力,以产生加压氮作为用于LNG基液化器的供料 。

Patent Agency Ranking