Abstract:
Transdermal diffusion cell testing vessel includes a container defining a chamber having an opening against which skin is placed, and a casing arranged partially around and spaced apart from part of the container to define a compartment therebetween. The chamber retains a saline solution and is not in flow communication with the compartment through which water is circulated. The vessel includes separate inlet ports and outlet ports, each including a conduit communicating with the chamber or compartment. The outlet port of the chamber is angled downward relative to a horizontal upper surface of the container against which skin being tested is placed. The vessel is used for conducting transdermal diffusion cell testing in combination with a solution source fluidly coupled to each vessel, a waste receptacle fluidly coupled to each vessel, a syringe pump fluidly coupled to a respective vessel, and a sample collector fluidly coupled to the syringe pump(s).
Abstract:
Pharmaceutical product release rate testing device includes a base, at least one carousel member rotatably mounted on the base, each carousel member including a plurality of test tube pockets each adapted to receive a test tube fillable with test media, and a dipping mechanism for dipping samples to be tested into the test tubes when present in the pockets and filled with test media. A rinsing/filling mechanism is provided to rinse or fill test tubes in one set of pockets while test tubes in another set of pockets are involved in the dipping process via the dipping mechanism. The carousel member is temperature-controlled such that all of the test tubes when present in the pockets are at substantially the same temperature for critical stages of the testing process. Methods for conducting pharmaceutical product release rate testing using the device are also disclosed.
Abstract:
Brush head for cleaning a vessel and use in an automatic dissolution vessel cleaning apparatus which includes a rotatable shaft defining a through passage, an upper end of which is operatively connected to a vacuum source, an inflow housing having at least one channel through which cleaning fluid is pumped and to which the shaft is rotatably mounted, and a brush assembly mounted on the shaft below the housing such that a lower end of the passage is situated below the brush assembly. In use, when the brush head is inserted into the vessel, cleaning fluid is directed through the channel(s) into the vessel while the shaft rotates causing the brush assembly to rotate and clean an inner wall of the vessel with fluid in the vessel being drawn into the passage via its lower end upon coupling of its upper end to the vacuum source.
Abstract:
Transdermal diffusion cell testing vessel includes a container defining a chamber having an opening against which skin is placed, and a casing arranged partially around and spaced apart from part of the container to define a compartment therebetween. The chamber retains a saline solution and is not in flow communication with the compartment through which water is circulated. The vessel includes separate inlet ports and outlet ports, each including a conduit communicating with the chamber or compartment. The outlet port of the chamber is angled downward relative to a horizontal upper surface of the container against which skin being tested is placed. The vessel is used for conducting transdermal diffusion cell testing in combination with a solution source fluidly coupled to each vessel, a waste receptacle fluidly coupled to each vessel, a syringe pump fluidly coupled to a respective vessel, and a sample collector fluidly coupled to the syringe pump(s).
Abstract:
Vessel for transdermal diffusion cell testing includes a container defining an interior chamber having an opening against which skin is placed, and a casing arranged partially around and spaced apart from part of the container to define a compartment therebetween. The chamber retains a saline solution and is not in flow communication with the compartment through which water is circulated. The vessel includes separate inlet ports and outlet ports, each including a conduit communicating with the chamber or compartment. The outlet port of the chamber is arranged above the inlet port of the chamber, proximate the opening of the chamber, and is angled downward relative to a horizontal upper surface of the container against which skin being tested is placed. Tilting of the vessel prior to or during introduction of solution prevents air bubbles from remaining between the skin and the solution.
Abstract:
Pharmaceutical product release rate testing device includes a base, at least one carousel member rotatably mounted on the base, each carousel member including a plurality of test tube pockets each adapted to receive a test tube fillable with test media, and a dipping mechanism for dipping samples to be tested into the test tubes when present in the pockets and filled with test media. A rinsing/filling mechanism is provided to rinse or fill test tubes in one set of pockets while test tubes in another set of pockets are involved in the dipping process via the dipping mechanism. The carousel member is temperature-controlled such that all of the test tubes when present in the pockets are at substantially the same temperature for critical stages of the testing process. Methods for conducting pharmaceutical product release rate testing using the device are also disclosed.