Abstract:
The invention relates to an installation (1) for determining the diffusion profile of at least one molecule through skin, comprising: a microfluidic chip (4) comprising: a donor compartment (10) intended to contain a test solution comprising the or each molecule; a receptor compartment (12) intended to contain a receptor solution; and a membrane (14) with skin-mimetic barrier properties arranged between the donor compartment (10) and the receptor compartment (12) so that the test solution diffuses through the membrane (14) from the donor compartment (10) into the receptor compartment (12); and an analyzer (8) for measuring a physical parameter of the solution contained in the receptor compartment (12) as the test solution diffuses through the membrane (14), and said analyzer (8) being configured for measuring the physical parameter in the receptor compartment (12), the analyzer (8) being further configured for calculating the diffusion profile of the or each molecule through skin from the measured physical parameter.
Abstract:
A sample receiving chip comprising a substrate that receives an aliquot volume of a sample fluid and a sample region of the substrate, sized such that the volume of the sample fluid is sufficient to operatively cover a portion of the sample region. The energy imparted into the sample fluid is transduced by the sample region to produce an output signal that indicates energy properties of the sample fluid. The sample receiving chip also includes a channel formed in the substrate, the channel configured to collect the aliquot volume of a sample fluid and transfer the aliquot volume of sample fluid to the sample region.
Abstract:
The device for testing reverse osmosis membranes provides for the quick and efficient testing of the transport properties of reverse osmosis membranes at a fixed pressure over a fixed period of time. The device includes a first chamber adapted for receiving a volume of de-ionized water and a second chamber adapted for receiving a volume of brine. In use, a reverse osmosis membrane to be tested is clamped between the first and second chambers and a pressurized inert gas, such as gaseous nitrogen, is injected into the second chamber at known pressure to initiate reverse osmosis transport. The transport is carried out at the known pressure for a fixed period of time, after which the concentration of brine volume of water in the first chamber is measured.
Abstract:
Transdermal diffusion cell testing vessel includes a container defining a chamber having an opening against which skin is placed, and a casing arranged partially around and spaced apart from part of the container to define a compartment therebetween. The chamber retains a saline solution and is not in flow communication with the compartment through which water is circulated. The vessel includes separate inlet ports and outlet ports, each including a conduit communicating with the chamber or compartment. The outlet port of the chamber is angled downward relative to a horizontal upper surface of the container against which skin being tested is placed. The vessel is used for conducting transdermal diffusion cell testing in combination with a solution source fluidly coupled to each vessel, a waste receptacle fluidly coupled to each vessel, a syringe pump fluidly coupled to a respective vessel, and a sample collector fluidly coupled to the syringe pump(s).
Abstract:
Described herein are systems, apparatuses and methods for the design and use of a suction-controlled box for the measurement of stress-dependent soil and water characteristics, shear strength, volume changes and consolidation characteristics from a single unsaturated soil specimen. The suction-controlled box can include a suction control part and a mechanical loading part, which can apply various suctions and mechanical loadings to test a specimen for a full range of suctions. The suction-controlled box can also include a helical water compartment that can flush diffused air bubbles.
Abstract:
Vessel for transdermal diffusion cell testing includes a container defining an interior chamber having an opening against which skin is placed, and a casing arranged partially around and spaced apart from part of the container to define a compartment therebetween. The chamber retains a saline solution and is not in flow communication with the compartment through which water is circulated. The vessel includes separate inlet ports and outlet ports, each including a conduit communicating with the chamber or compartment. The outlet port of the chamber is arranged above the inlet port of the chamber, proximate the opening of the chamber, and is angled downward relative to a horizontal upper surface of the container against which skin being tested is placed. Tilting of the vessel prior to or during introduction of solution prevents air bubbles from remaining between the skin and the solution.
Abstract:
Embodiments of the invention are related to monitoring devices and methods with osmometric sensors, amongst other things. In an embodiment, the invention includes an implantable heart failure monitoring system including an osmometric sensor, the osmometric sensor configured to generate a signal corresponding to the osmotic strength of a bodily fluid, and a controller in communication with the osmometric sensor, the controller configured to receive and process the signal corresponding to the osmotic strength of a bodily fluid. Other aspects and embodiments are provided herein.
Abstract:
A solute concentration measurement device is disclosed. The device may comprise a filter membrane, an exchange chamber, a sensing chamber, a separator, and a sensor. The device may be configured to be placed in fluid communication with a sample solution containing a solute and a solvent. The filter membrane may provide selective fluid communication between the solution and the exchange chamber. The separator may separate the exchange chamber from the sensing chamber and cause a change in a condition of the sensing chamber corresponding to a change of a condition of the exchange chamber. The sensor may sense the condition pertaining to the sensing chamber and calculate the concentration of the sample solution corresponding to this change.
Abstract:
An apparatus and a method are disclosed for providing point of care testing for osmolarity of a bodily fluid. An apparatus is disclosed as having a fluid pathway passing through it for receiving and testing a sample fluid. The invention permits osmolarity testing of a sample fluid wherein the sample fluid has a volume of less than approximately 30 nL, and implements a method and device to measure fluid osmolarity in a clinical setting quickly and accurately, while also reducing evaporation of the fluid.
Abstract:
The invention is an apparatus for determining a temperature at which a phase change occurs in a fluid sample, a method for measuring a temperature at which a phase change occurs in a sample and a sample cell. An apparatus for determining a temperature at which a phase change occurs in a fluid sample 60′ in accordance with the invention includes a sample cell (12′)for providing direct collection of the sample from a sample source (74) which is collected and retained at a collecting end thereof by capillary attraction between the collecting end and the sample, the sample cell including a longitudinal passage (78) extending from the collecting end to a far end through which light is transmitted to provide an image of the sample as retained at the collecting end of the passage and with a cross sectional area of the passage being greater at the far end than at the collecting end; a heating and cooling assembly (14), including a temperature sensing device (44), the heating and cooling assembly holding and thermally contacting the sample cell during the determining of the temperature by the temperature measuring device at which the phase change occurs while the sample is positioned in the collecting end; and an illumination system (16) for directing a light beam to the collecting end, through the sample, through the longitudinal passage and out of the far end to permit viewing of the sample from the far end to determine the temperature at which the phase change occurs.