Abstract:
A supported catalyst composition useful in the polymerization of addition polymerizable monomers, a method for making and a polymerization process using the same, the composition including: 1) a support, 2) one or more transition metal complexes, 3) one or more, non-ionic Lewis acid activators such as tris(pentafluorophenyl)boron or tris(pentafluorophenyl)aluminum, and 4) one or more non-protic Lewis base modifiers such as diethylether, triethylamine, or triphenylphosphine.
Abstract:
The present invention provides a chemically-modified support comprising an inorganic oxide containing optionally functionalized hydroxyl groups, having chemically linked thereto the cation of a cation/anion pair. The present invention further provides a supported catalyst system comprising the chemically-modified support as described above, and a transition metal compound of Groups 3-10 (preferably a Group 4 metal compound) containing at least one π-bonded anionic ligand group, said transition metal compound being capable of reacting with the chemically-modified support through the cation of the cation/anion pair to thereby render the transition metal compound catalytically active. The present invention further provides a process for preparing the chemically-modified support of the invention. The present invention further provides an addition polymerization process comprising contacting one or more addition polymerizable monomers with the supported catalyst system of the invention under addition polymerization conditions.
Abstract:
A cocatalyst or cocatalyst component, including a compound corresponding to the formula: (A*+a)b(Z*J*j)−cd, wherein: A* is a cation of from 1 to 80 atoms, not counting hydrogen atoms, Z* is an anion group of from 1 to 50 atoms, not counting hydrogen atoms, containing two or more Lewis base sites; J* is a Lewis acid of from 1 to 80, not counting hydrogen atoms, coordinated to at least one Lewis base site, and optionally two or more such J* groups may be joined together in a moiety having multiple Lewis acidic functionality, j is from 2 to 12 and a, b, c, and d are integers from 1 to 3, with the proviso that a×b is equal to c×d, and provided further that one or more of A*, Z* or J* comprises a hydroxyl group or a polar group containing quiescent reactive functionality.