摘要:
[PROBLEMS] A system for automatically minimizing cardiac oxygen consumption that is capable of estimating a patient's amount of cardiac oxygen consumption with high accuracy and moreover capable of minimizing the amount of cardiac oxygen consumption and a cardiac disease treating system are provided.[MEANS FOR SOLVING PROBLEMS] The cardiac disease treating system 10 comprises an input part 12 for inputting a patient's 20 indexes of kinetics of blood circulation including at least heart rate, a cardiac oxygen consumption calculation monitor unit 14 for calculating the estimated value of said patient's 20 amount of cardiac oxygen consumption based on the indexes of kinetics of blood circulation input from the input part 12, and a cardiac oxygen consumption curtailment unit 16 for comparing the heart rate input from the input part 12 and the critical heart rate minimizing the estimated value of amount of cardiac oxygen consumption calculated by the cardiac oxygen consumption monitor unit 14 and controlling the patient's 20 heart rate in conformity with the results of this comparison.
摘要:
A practical method for estimating cardiac output and pulmonary artery wedge pressure with good accuracy is provided. A method is provided for estimating the impedance arising from solid tissue by determining the impedance at the intersection between the line of identity and the extrapolated regression line, where the regression line is obtained by linearly regressing the maximum value to the minimum value of the impedance signal of each of multiple data sets, where each data set contains the maximum value and the minimum value of the impedance signal during one cardiac cycle, where impedance signal is obtained between a can electrode implanted in the left thoracic wall and an electrode inserted into the coronary vein, over a specific period of time following the infusion of hypertonic saline into the pulmonary circulation.
摘要:
A blood pressure regulating system uses a native regulation rule to estimate at least one nerve activity in response to blood pressure changes, comprising at least one blood pressure sensing means which senses blood pressure and outputs a input blood pressure signal, a calculating means which receives the input blood pressure signal, calculates a transfer function by computing a Fourier transform of a normal blood pressure signal and a normal sympathetic nerve activity from normal cardiovascular system, calculates an impulse response by computing an inverse Fourier transform of the transfer function, calculates a sympathetic nerve stimulation signal using a convolution integral between the input blood pressure signal and the impulse response, and outputs the sympathetic nerve stimulation signal, and a stimulating means which receives the sympathetic nerve stimulation signal, and stimulates the sympathetic nerve innervating vascular beds based on the sympathetic nerve stimulation signal such that blood pressure is regulated.
摘要:
The present invention provides a cardiac pacing system based on biological activities, comprising: a) at least one nerve activity sensing means which senses nerve activity of a cardiac sympathetic nerve and/or a vagal nerve, and outputs a plurality of input nerve activity signals; b) a calculating means which receives the input nerve activity signals, calculates a transfer function by computing a Fourier transform of normal nerve activity signals and a normal heart rate signal from normal cardiovascular system, calculates an impulse response by computing an inverse Fourier transform of the transfer function, calculates a plurality of pacing signals for control of a heart rate using a convolution integral between the input nerve activity signals and the impulse response, and outputs the pacing signals; and c) a pacing means which receives the pacing signals, and stimulates the heart based on the pacing signals such that heart rate is regulated.
摘要:
A practical method for estimating cardiac output and pulmonary artery wedge pressure with good accuracy is provided. The present invention provides a method for estimating the impedance arising from solid tissue by determining the impedance at the intersection between the line of identity and the extrapolated regression line, where the regression line is obtained by linearly regressing the maximum value to the minimum value of the impedance signal of each of multiple data sets, where each data set contains the maximum value and the minimum value of the impedance signal during one cardiac cycle, where impedance signal is obtained between a can electrode implanted in the left thoracic wall and an electrode inserted into the coronary vein, over a specific period of time following the infusion of hypertonic saline into the pulmonary circulation.
摘要:
A medical treating system based on biological activities characterized by biological activity sensing means for sensing biological activity information produced by biological activities and outputting a biological activity signal, calculating means for receiving, analyzing, and processing the biological activity signals from the biological activity sensing means, calculating an organism stimulation signal, and outputting the organism stimulation signal, and organism stimulating means for receiving the organism stimulation signal calculated by the calculating means and stimulating an organism according to the organism stimulation signal. A cardiac pacing system based on the treating system, a blood pressure regulating system, and a cardiac disease treating system are also disclosed.
摘要:
A distributed cardiac pacing system comprises a first ultra miniature integrated cardiac pacemaker adapted to be placed in an atrial myocardium and a second ultra miniature integrated cardiac pacemaker adapted to be placed in a ventricular myocardium.
摘要:
Problems To provide a cardiac disease treatment system for accurately diagnosing the functional cause of an abnormality of a cardiac disease by analyzing the hemodynamic state of a patient, automatically performing medication in accordance with the diagnosis result, and treating the cardiac disease. Means for Solving Problems The cardiac disease treatment system is characterized by comprising input means (2) for inputting the cardiac output value of the patient, the left atrial pressure value and/or the right atrial pressure value, first calculating means (31) for calculating the pumping ability value of the left heart or the right heart from the inputted cardiac output and the left or right atrial pressure value, first comparing means (41) for comparing the pumping ability value of the left heart or the right heart with a target pumping ability value, and first medicating means (51) for medicating the patient in accordance with the result of the comparison by the first comparing means (41).
摘要:
A cardiac disease treating system has an input part for inputting a patient's indexes of kinetics of blood circulation including at least heart rate, a cardiac oxygen consumption calculation monitor unit for calculating the estimated value of said patient's amount of cardiac oxygen consumption based on the indexes of kinetics of blood circulation input from the input part, and a cardiac oxygen consumption curtailment unit for comparing the heart rate input from the input part and the critical heart rate minimizing the estimated value of amount of cardiac oxygen consumption calculated by the cardiac oxygen consumption monitor unit and controlling the patient's heart rate in conformity with the results of this comparison.
摘要:
ProblemsTo provide a cardiac disease treatment system for accurately diagnosing the functional cause of an abnormality of a cardiac disease by analyzing the hemodynamic state of a patient, automatically performing medication in accordance with the diagnosis result, and treating the cardiac disease.Means for solving problemsThe cardiac disease treatment system is characterized by comprising input means (2) for inputting the cardiac output value of the patient, the left atrial pressure value and/or the right atrial pressure value, first calculating means (31) for calculating the pumping ability value of the left heart or the right heart from the inputted cardiac output and the left or right atrial pressure value, first comparing means (41) for comparing the pumping ability value of the left heart or the right heart with a target pumping ability value, and first medicating means (51) for medicating the patient in accordance with the result of the comparison by the first comparing means (41).