Abstract:
Disclosed are a method, system and/or device of continuous barcode tape based inventory location tracking. In one aspect, a method includes analyzing a layout diagram of a distribution center. The method further includes determining that the layout diagram includes a shelf. A number of segments associated with the shelf based on a forecasted allocation of an inventory on the shelf are calculated. A bar code tape having a globally unique identifier (GUID) associated with each segment of the number of shelves is automatically generated using a processor and a memory of a central inventory tracking system.
Abstract:
Disclosed are a system and/or a method of telepresence based inventory pick and place operations through actuator controlled robotic arms affixed to each row of a shelf. A method includes mounting a robotic arm at an end of a row of a shelf of inventory on a set of rails affixed to the row of a shelf. The robotic arm is permitted to move horizontally along the row of the shelf. The robotic arm is repositioned along the three axes using a set of actuators. A haptic motion of a human user is mirrored that is remotely using a positioning device (e.g., human may feel the feedback of the remote arm as it touches the objects). An item is placed on a counting platform in front of the robotic arm. The items are placed automatically in the designated location down through a transport means when a pick operation is completed.
Abstract:
A system and method for providing upstream adaptive modulation. Burst parameters associated with a range of data interval usage codes (IUCs) are defined. Each of the data IUCs has a different modulation order and forward error correction (FEC). The SNR and codeword error rate for each satellite modem in the network are monitored. The data IUCs are dynamically assigned to different satellite modems within an upstream channel based on SNR and/or codeword error rate to enable each of the satellite modems in the upstream channel to achieve maximum bandwidth efficiency during upstream data transmissions. Bandwidth requests are received from the satellite modems and granted. The grant includes the assigned data IUC. The data bursts received in the upstream channel are each processed using the parameters from the assigned IUC for each of the satellite modems sending data in the upstream channel. When any of the satellite modems' SNR and/or codeword error rate changes, the data IUC for that satellite modem is changed accordingly.
Abstract:
A method of transmitting data in a cable modem system includes the steps of encoding the data using forward error correction. The data is then encoded with Turbo encoding. The data is then sent to a modulation scheme. The data is then transmitted over a cable channel. The data is then demodulated. The data is then decoded using a Turbo decoder. An inverse of the forward error correction is then applied to the data.
Abstract:
A system and method for providing upstream adaptive modulation. Burst parameters associated with a range of data interval usage codes (IUCs) are defined. Each of the data IUCs has a different modulation order and forward error correction (FEC). The SNR and codeword error rate for each satellite modem in the network are monitored. The data IUCs are dynamically assigned to different satellite modems within an upstream channel based on SNR and/or codeword error rate to enable each of the satellite modems in the upstream channel to achieve maximum bandwidth efficiency during upstream data transmissions. Bandwidth requests are received from the satellite modems and granted. The grant includes the assigned data IUC. The data bursts received in the upstream channel are each processed using the parameters from the assigned IUC for each of the satellite modems sending data in the upstream channel. When any of the satellite modems' SNR and/or codeword error rate changes, the data IUC for that satellite modem is changed accordingly.
Abstract:
All digital reference frequency locking. An all digital approach is provided for operation within one or more CMs within a cable modem communication system to lock the upstream of the one or more CMs to the downstream symbol clock provided from a CMTS. The locking of the CM's upstream may be performed using one of at least three different functions: (1) Locking the upstream symbol clock phase to the downstream symbol clock phase, (2) Locking the downstream symbol clock phase to the headend reference clock phase (typically 10.24 MHz or integer multiple thereof), and (3) Locking the upstream carrier frequency to the downstream symbol clock frequency. The all-digital techniques for supporting all digital reference frequency locking functionality provide high performance to support S-CDMA and other synchronous modulation techniques.
Abstract:
A communications receiver system is presented for detecting burst errors and providing erasure information to the block decoder (outer decoder), thereby effectively doubling the conventional correction capability of the block decoder with only a minimal increase in complexity. In one embodiment, this mechanism takes the form of a circuit which re-encodes the output of the inner decoder, compares it with the received sequence of code symbols, and flags a portion of the inner decoder output for erasure when an excessive number of code symbol errors are detected. In a second embodiment, this mechanism takes the form of a circuit which makes hard symbol decisions on the channel signal, compares the hard decisions to the channel signal to determine a noise level, and thereafter flags the channel output in regions with excessive noise levels.
Abstract:
Disclosed are a method, system and/or device of continuous barcode tape based inventory location tracking. In one aspect, a method includes analyzing a layout diagram of a distribution center. The method further includes determining that the layout diagram includes a shelf. A number of segments associated with the shelf based on a forecasted allocation of an inventory on the shelf are calculated. A bar code tape having a globally unique identifier (GUID) associated with each segment of the number of shelves is automatically generated using a processor and a memory of a central inventory tracking system.
Abstract:
Disclosed are a system, device and/or an apparatus of modular hanging lasers to enable real-time control in a distribution center. In one embodiment, a laser assembly, includes a first support member having a curved upper hook, a second support member having the curved upper hook, and a printed circuit board in between the first support member and the second support member: (1) that is physically coupled with the first support member at a first rotation point of the printed circuit board, and which is physically coupled with the second support member at a second rotation point of the printed circuit board. The laser assembly is attached to a first wire of a distribution center above at least one row of the distribution center having at least one of a shelving, an inventory, and storage compartments along at least one row.
Abstract:
A method of transmitting data in a cable modem system includes the steps of encoding the data using forward error correction. The data is then encoded with Turbo encoding. The data is then sent to a modulation scheme. The data is then transmitted over a cable channel. The data is then demodulated. The data is then decoded using a Turbo decoder. An inverse of the forward error correction is then applied to the data.