Abstract:
A security method and system for Layer Independent Passive Clustering (LIPC) is presented. The inventive method and system maintains the states in the LIPC cluster formation protocol while adding a ‘Trusworthy’ event to each state and provides a methodology that depends on the state of the transmitting node to quantify Trustworthy and derive a Trust Confidence Value (TCV) to represent the level of confidence in quantifying ‘Trustworthy’. The invention dynamically computes a degree of trustworthiness for each participating network node and eliminates nodes from participating in the PC cluster formation protocol and packet forwarding if they do not meet established trust metrics. The security solution can also apply to PC-based Mobile Ad hoc Networks (MANETs). The novel system and method applies a multidimensional set of security algorithms to protect the LIPC cluster formation protocol from malicious attacks that compromise cluster formation and secure routing.
Abstract:
The present invention provides methods for efficient control message distribution in a VANET. Efficient flooding mechanisms are provided to fulfill the objective of flooding (delivering a message to every connected node) with a limited number of re-broadcasting by selected key nodes. A suppression-based efficient flooding mechanism utilizes a Light Suppression (LS) technique to reduce the number of flooding relays by giving up the broadcasting of a flooding message when a node observes downstream relay of the same flooding message. Additionally, a relay-node based efficient flooding mechanism selects Relay Nodes (RN) to form an efficient flooding tree for control message delivery. RNs are nodes that relay at least one control message, for instance a Membership Report (MR) to the upstream node in “k” previous control message cycles The upstream node may be the group header (GH) for the LPG.
Abstract:
Network architecture configured for open communication between a plurality of sub-networks. Each of the plurality of sub-networks has a different routable network addressing scheme. The architecture includes at least one broker node adapted to communicate using at least two different routable network addressing schemes. The broker node comprises an identification management module configured to collect peer-application addresses for nodes currently accessing a specific application, the peer-application addresses being associated with a specific application, an address resolution module configured to map each of the peer-application addresses to a sub-network specific routable network address and a network coordination module configured to monitor and coordinate sub-network communication capabilities between the broker node and at least one other broker node and elect a primary broker node for each sub-network which the broker node and at least one other broker node is capable of communication.
Abstract:
A mobile terminal and a method of forming a human network using the same are provided. The method for forming a human network includes selecting a person of interest from an image; selecting a relay person from the first stored image to which information about the selected person of interest is relayed through facial recognition; and acquiring the personal information for the selected person of interest from a mobile terminal of the selected relay person.
Abstract:
A method and system for determining a size of a local peer group (LPG) network in a dynamic roadway (mobile) environment is provided. In one embodiment, the method comprises measuring a roundtrip time between a first node and a second node, and utilizing the measured roundtrip time to select the size of the local peer group network from a lookup table. In another embodiment, the method comprises determining when the roundtrip time exceeds a time interval of the heartbeat signal, and when the roundtrip time exceeds the time interval of the heartbeat signal adjusting the size of the local peer group network.
Abstract:
A method of controlling a wireless communication device that is installed in a moving vehicle. The method comprises receiving roadway topology information and vehicle traffic pattern information, receiving vehicle and wireless communication device performance information from a plurality of other moving vehicles, determining current position information for the moving vehicle; determining a first set of metrics for a performance of the wireless communication device installed in the moving vehicle, estimating at least one second metric related to the performance of the wireless communication device or an ad-hoc network which includes each wireless communication device and changing an operation or routing parameter for the wireless communication device based upon the estimation. The second metric is based upon at least a sub-set of the first set of metrics, the received information and the determined current position information for the moving vehicle.
Abstract:
An on-demand method of routing data between a plurality of local peer groups (LPG). Each LPG includes a plurality of moving nodes. The method comprises transmitting a route request message from a source node, relaying the route request message to a native boundary node; forwarding the route request message to a foreign boundary node, determining if the destination node is within an LPG for the foreign boundary node; relaying the route request message to another boundary node if the destination node is not within the LPG, relaying the route request message to the destination node if the destination node is within the LPG, receiving the routing request message at the destination node, transmitting a routing response to the source node, relaying the routing response to the source node through a path discovered by the route request, receiving the routing response at the source node, and transmitting the data, upon receipt of the routing response.
Abstract:
An on-demand method of routing data between a plurality of local peer groups (LPG) of plural moving nodes comprises transmitting a route request message from a source node, relaying the route request message to a native boundary node; forwarding the route request message to a foreign boundary node, determining if the destination node is within an LPG for the foreign boundary node; relaying the route request message to another boundary node if the destination node is not within the LPG, relaying the route request message to the destination node if the destination node is within the LPG, receiving the routing request message at the destination node, transmitting a routing response to the source node, relaying the routing response to the source node through a path discovered by the route request, receiving the routing response at the source node, and transmitting the data, upon receipt of the routing response.
Abstract:
A method and communication device for routing unicast and multicast messages. The method for routing a unicast message includes receiving a first control packet including routing parameters from a group header node, updating a routing table based upon the routing parameters, receiving a second control packet including additional routing parameters from a group node, updating the routing table based upon the additional routing parameters and generating a forwarding table from the routing table when both of the updated steps are completed. The unicast message is routed based upon the forwarding table. A method for routing a multicast message comprises receiving the multicast message, determining if a multicast group destination for the multicast message is in a multicast forwarding table (MFT), determining if the multicast message has been previously forwarded and forwarding the multicast message if the message was not previously forwarded and the multicast group destination is in the MFT.
Abstract:
A security method and system for Layer Independent Passive Clustering (LIPC) is presented. The inventive method and system maintains the states in the LIPC cluster formation protocol while adding a ‘Trusworthy’ event to each state and provides a methodology that depends on the state of the transmitting node to quantify Trustworthy and derive a Trust Confidence Value (TCV) to represent the level of confidence in quantifying ‘Trustworthy’. The invention dynamically computes a degree of trustworthiness for each participating network node and eliminates nodes from participating in the PC cluster formation protocol and packet forwarding if they do not meet established trust metrics. The security solution can also apply to PC-based Mobile Ad hoc Networks (MANETs). The novel system and method applies a multidimensional set of security algorithms to protect the LIPC cluster formation protocol from malicious attacks that compromise cluster formation and secure routing.