Abstract:
The present invention provides a method for adjusting a maximum power of a circuit having a first voltage output and a first power. The method includes the following steps: (a) obtaining a voltage coefficient by measuring the first power of the circuit and calculating an open-circuit voltage of the first voltage output; (b) estimating an estimated power based on the voltage coefficient; and (c) repeating the steps (a) to (b) for a specific number of times, in which the specific number of times is determined based on a variation of the estimated power during a time period.
Abstract:
An underwater wireless sensor is provided. The underwater wireless sensor comprises a floating-diving device enabling the underwater wireless sensor to dive to a first predetermined water depth in response to a predetermined condition; a sensing device converting a plurality of environmental parameters into a plurality of environmental messages; a micro controller receiving the environmental messages and sending a command signal including the environmental messages; and a communication device receiving the command signal, sending the command signal via a wireless sensor network, receiving an external message including a second predetermined water depth, and sending the external message to the micro controller so that the micro controller performs a corresponding operation and sends out a control signal to enable the underwater wireless sensor to move to the second predetermined water depth.
Abstract:
An underwater wireless sensor is provided. The underwater wireless sensor comprises a floating-diving device enabling the underwater wireless sensor to dive to a first predetermined water depth in response to a predetermined condition; a sensing device converting a plurality of environmental parameters into a plurality of environmental messages; a micro controller receiving the environmental messages and sending a command signal including the environmental messages; and a communication device receiving the command signal, sending the command signal via a wireless sensor network, receiving an external message including a second predetermined water depth, and sending the external message to the micro controller so that the micro controller performs a corresponding operation and sends out a control signal to enable the underwater wireless sensor to move to the second predetermined water depth.
Abstract:
An automated remote water quality monitoring system with wireless communication capability and the method thereof is provided. A water quality monitoring system is provided, including: a plurality of monitoring apparatuses, each of which has a radio communication module transmitting at least one environmental parameter; a server receiving the at least one environmental parameter via a base station; and a gateway being one selected from a group consisting of the plurality of monitoring apparatuses, being geographically the closest one to the base station, receiving the at least one environmental parameter and transmitting the at least one environmental parameter to the base station.
Abstract:
A routing method for a network is provided. The routing method includes the steps of a) selecting one of a plurality of basic nodes as a cluster head; b) broadcasting a first message by the cluster head; c) continuing to broadcast the first message by any of the plurality of basic nodes which receives the first message, until all the plurality of basic nodes receive the first message; and d) selecting a corresponding father node by each of the plurality of basic nodes based on an information associated with the first message.
Abstract:
A wireless sensor network gateway unit is proposed, which is designed for integration to a wireless sensor network (WSN) for providing a gateway function with a failed link auto-redirecting capability for the wireless sensor network. The proposed WSN gateway unit is characterized by the provision of an failed link auto-redirecting capability, which can respond to the failure of any sensor node in the WSN system by performing a failed link auto-redirecting operation for redirecting the down-linked good sensor nodes for linking to a nearby good sensor node to thereby allow the down-linked good sensor nodes to be nevertheless able to transfer data to the WSN gateway unit of the invention. This feature allows the WSN gateway unit of the invention to maintain good operational reliability for the WSN system.
Abstract:
A front-end gateway unit is designed for integration to a remote ecological environment monitoring system that is equipped with a wireless sensor network (WSN) system installed at a remote site, such as a farmland or a garden, for the purpose of allowing the WSN system to exchange data with a back-end host server via a wireless communication system. The front-end gateway unit is characterized by the capability of using either the WSN system or a built-in sensing module for collecting ecological data, and the capability of combining geographical location data in the ecological data. This feature allows the collection of a comprehensive set of ecological data (including geographical location, temperature, humidity, sunlight data, wind speed, and pest number) for transfer to the back-end host server, such that research/management personnel at the local site can conveniently browse these ecological data and learn the ecological conditions of the remotely monitored area.
Abstract:
A back-end host server unit for remote ecological environment monitoring system is designed to provide a back-end host server function for a front-end gateway unit and sensor network, such as WSN (Wireless Sensor Network) installed at a remote site such as farmland. This back-end host server unit is characterized by the capability of using a public wireless communication system, such as GSM (Global System for Mobile Communications), for receiving ecological data from the front-end gateway unit and WSN system, and the capability of compiling received ecological data into webpages for posting on a website that allows the research/management personnel to browse the ecological data via a network system such as the Internet. This feature allows the research/management personnel at the local site to conveniently gather ecological data and learn the ecological conditions of the remote site.
Abstract:
A multi-checkpoint type clustered animal counting device is proposed, which is capable of providing a counting function that can be used for statistically determining the number of animals (such as fruit flies) within a region such as farmland or garden. The proposed animal counting device is characterized by the utilized to at least two object sensors, wherein the first object sensor is disposed at a first checkpoint while the second object sensor is disposed at a second checkpoint, and wherein the first object sensor is initially set to power-on state while the second object sensor is initially set to power-off state and can be switched on only when the first object sensor is triggered. When the second object sensor is triggered, the counting operation will increase the output count number by one. This feature allows a more accurate result and can help save power consumption.
Abstract:
An automated remote water quality monitoring system with wireless communication capability and the method thereof is provided. A water quality monitoring system is provided, including: a plurality of monitoring apparatuses, each of which has a radio communication module transmitting at least one environmental parameter; a server receiving the at least one environmental parameter via a base station; and a gateway being one selected from a group consisting of the plurality of monitoring apparatuses, being geographically the closest one to the base station, receiving the at least one environmental parameter and transmitting the at least one environmental parameter to the base station.