Abstract:
An accommodating intraocular lens (AIOL) includes an optic adapted to produce a trapezoidal phase shift and a plurality of haptics. Each haptic extends from a haptic-optic junction to at least one transverse arm contacting a capsular bag of the eye, and each haptic has sufficient length and rigidity to stretch a capsular bag of the eye to contact ciliary muscles of the eye. The haptic-optic junctions vault the optic forward relative to the haptics and compression of the haptics by the ciliary muscles moves the anterior optic forward. A combined accommodative power produced by the motion of the anterior optic and the trapezoidal phase shift is at least 0.5 Diopters.
Abstract:
An ophthalmic lens includes an optical filter operable to filter out at least visible light having a wavelength less than 450 nm. The lens also includes a first diffractive structure adapted to produce a focus for visible light in a first wavelength range above 550 nm and to reduce longitudinal chromatic aberration to less than one diopter for incoming visible light in the first wavelength range. The lens also includes a second diffractive structure outside the first diffractive structure in a radial direction and adapted to produce a focus for visible light in a second wavelength range between 450 nm and 550 nm. The second diffractive structure is also adapted to reduce longitudinal chromatic aberration for incoming visible light in the second wavelength range to less than one diopter while allowing longitudinal chromatic aberration in the first wavelength range in an amount greater than the first diffractive structure.
Abstract:
In one aspect, the present invention provides a method for correcting vision that employs two lenses, at least one of which is a multifocal lens, with different focusing characteristics for use in the two eyes of the patient. The visual performance of each lens (e.g., visual contrast or acuity) is selected in accordance with a predefined relation so as to optimize the binocular visual performance provided by the combination of the lenses.
Abstract:
In one aspect, the present invention provides an intraocular lens (IOL) that includes an optic comprising an anterior surface, a posterior surface, and a plurality of diffractive zones disposed on one of those surfaces. The surface having the diffractive zones has a profile characterized by a combination of aspheric and toric components.
Abstract:
In one aspect, the present invention provides a two-element ophthalmic lens in which a lateral shift of the elements relative to one another can cause a variation not only in a spherical power provided by the lens but also in spherical aberration exhibited by that lens. In some implementations, the thickness profiles of the two elements are designed such that the variation in spherical aberration is positively correlated with that of the spherical power of the lens.
Abstract:
In one aspect, the present invention provides a method of designing an intraocular lens (IOL) to address variations of at least one ocular parameter in a population of patient eyes. The method can include establishing at least one eye model in which the ocular parameter can be varied over a range exhibited by the population. The eye model can be employed to evaluate a plurality of IOL designs in correcting visual acuity for eyes in the patient population. An IOL design that provides a best fit for visual performance over at least a portion of the parameter range can then be selected.
Abstract:
An ophthalmic lens includes an optical filter operable to filter out at least visible light having a wavelength less than 450 nm. The lens also includes a first diffractive structure adapted to produce a focus for visible light in a first wavelength range above 550 nm and to reduce longitudinal chromatic aberration to less than one diopter for incoming visible light in the first wavelength range. The lens also includes a second diffractive structure outside the first diffractive structure in a radial direction and adapted to produce a focus for visible light in a second wavelength range between 450 nm and 550 nm. The second diffractive structure is also adapted to reduce longitudinal chromatic aberration for incoming visible light in the second wavelength range to less than one diopter while allowing longitudinal chromatic aberration in the first wavelength range in an amount greater than the first diffractive structure.
Abstract:
In one aspect, the present invention provides an intraocular lens (IOL), which comprises at least two optics disposed in tandem along an optical axis, and an accommodative mechanism that is coupled to at least one of the optics and is adapted to adjust a combined optical power of the optics in response to natural accommodative forces of an eye in which the optics are implanted so as to provide accommodation. At least one of the optics has a surface characterized by a first refractive region, a second refractive region and transition region therebetween, where an optical phase shift of incident light having a design wavelength (e.g., 550 nm) across the transition region corresponds to a non-integer fraction of that wavelength.
Abstract:
In one aspect, a trifocal ophthalmic lens is disclosed that includes an optic having a surface that comprises at least one trifocal diffractive pattern and at least one bifocal diffractive pattern such that the bifocal pattern provides near and far vision and the trifocal pattern generates near, far, and intermediate vision. For example, the trifocal pattern can provide near, far, and intermediate foci such that the near and far foci are substantially coincident, respectively, with a near and a far focus of the bifocal pattern. In this manner, the trifocal and bifocal patterns collectively provide near, intermediate, and far foci (or focal regions) corresponding, respectively, to the near, intermediate and far vision.
Abstract:
The invention provides a new formulation of the composition comprising Flos Lonicerae Fructus Forsythiae and Radix Scutellariae. This invention also provides a method for identification with HPLC and the characteristic peaks of the compositions of said composition. The composition possesses antiviral effective, namely, inhibition of influenza virus, parainfluenza virus, herpes I virus and herpes II virus. The invention refers to a method for preparation and control of the active components of Flos Lonicerae Fructus Forsythiae and Radix Scutellariae for its biological activity. The invention also provides a unique raw materials and intermediate formulation.