Abstract:
A method and an apparatus for optimizing a target working line are disclosed. The target working line includes at least one robot manipulator, at least one conveyor and at least one item on the conveyor to be displaced by the robot manipulator. The method includes: obtaining an evaluation model for the target working line, the evaluation model yielding an overall success rate of moving the item from one conveyor to another conveyor based on at least one measuring parameter, the measuring parameter being a physical attribute of the target working line; yielding the overall success rate for the target working line as a function of a value for the measuring parameter for the target working line; and in case that the yielded overall success rate is lower than a predetermined threshold rate, updating a value for a configuring parameter based on the overall success rate, the configuring parameter corresponding to the measuring parameter, and the configuring parameter being states of the working line. The optimization of the evaluation model does not require an implementation of an on-site process or an involvement of an experienced engineer or worker. Instead, simulation software can be used to obtain customized parameters used for the target working line, resulting in an increased success rate within a short period of time.
Abstract:
A method and an apparatus for optimizing a target working line are disclosed. The target working line includes at least one robot manipulator, at least one conveyor and at least one item on the conveyor to be displaced by the robot manipulator. The method includes: obtaining an evaluation model for the target working line, the evaluation model yielding an overall success rate of moving the item from one conveyor to another conveyor based on at least one measuring parameter, the measuring parameter being a physical attribute of the target working line; yielding the overall success rate for the target working line as a function of a value for the measuring parameter for the target working line; and in case that the yielded overall success rate is lower than a predetermined threshold rate, updating a value for a configuring parameter based on the overall success rate, the configuring parameter corresponding to the measuring parameter, and the configuring parameter being states of the working line. The optimization of the evaluation model does not require an implementation of an on-site process or an involvement of an experienced engineer or worker. Instead, simulation software can be used to obtain customized parameters used for the target working line, resulting in an increased success rate within a short period of time.
Abstract:
A method is disclosed for calibrating a tool center point of tool for an industrial robot system. The method can include moving a first part of said tool and a cross beam sensor by said industrial robot; recording a first posture and a second posture of said industrial robot during the interruptions of a first beam and a second beam of a cross beam sensor; moving a second part of said tool and said cross beam sensor by said industrial robot; recording a third posture and a fourth posture of said industrial robot; calculating the tool orientation in consideration of said first posture, second posture, third posture and fourth posture of said industrial robot; and moving said tool and said cross beam sensor by said industrial robot so that said tool center point of said tool interrupts said crossing point of said cross beam sensor.
Abstract:
A method is disclosed for calibrating a tool centre point of tool for an industrial robot system. The method can include moving a first part of said tool and a cross beam sensor by said industrial robot; recording a first posture and a second posture of said industrial robot during the interruptions of a first beam and a second beam of a cross beam sensor; moving a second part of said tool and said cross beam sensor by said industrial robot; recording a third posture and a fourth posture of said industrial robot; calculating the tool orientation in consideration of said first posture, second posture, third posture and fourth posture of said industrial robot; and moving said tool and said cross beam sensor by said industrial robot so that said tool centre point of said tool interrupts said crossing point of said cross beam sensor.
Abstract:
A method for calibration of work piece mounted in a predetermined manner to a work object and a robot system using the same. The work object has a first surface, a second surface and a third surface, and wherein the work object frame of reference is defined by a first coordinate line, a second coordinate line, and a third coordinate line at intersections of the first surface, the second surface and the third surface converging on a point. The method includes: touching a first number of locations on the first surface of the work object positioned by the robot touch probe to measure their actual locations on the first surface in the robot frame of reference, and storing the measured first coordinates for the measured locations; touching a second number of locations on the second surface of the work object positioned by the robot touch probe to measure their actual locations on the second surface in the robot frame of reference, and storing the measured second coordinates for the measured locations; touching a third number of locations on the third surface of the work object positioned by the robot touch probe to measure their actual locations on the third surface in the robot frame of reference, and storing the measured third coordinates for the measured locations; calculating orientation and origin of the work object frame of reference from the robot frame of reference based on the measured first, second and third coordinates for the measured locations, where the work object is positioned in the robot cell. The method provides all the necessary data to determine orientation and origin of the actual work object frame of reference relative to the robot frame of reference. The method also enables the robot to perform machine operations accurately at locations on a work object.
Abstract:
A method for calibration of work piece mounted in a predetermined manner to a work object and a robot system using the same. The work object has a first surface, a second surface and a third surface, and wherein the work object frame of reference is defined by a first coordinate line, a second coordinate line, and a third coordinate line at intersections of the first surface, the second surface and the third surface converging on a point. The method includes: touching a first number of locations on the first surface of the work object positioned by the robot touch probe to measure their actual locations on the first surface in the robot frame of reference, and storing the measured first coordinates for the measured locations; touching a second number of locations on the second surface of the work object positioned by the robot touch probe to measure their actual locations on the second surface in the robot frame of reference, and storing the measured second coordinates for the measured locations; touching a third number of locations on the third surface of the work object positioned by the robot touch probe to measure their actual locations on the third surface in the robot frame of reference, and storing the measured third coordinates for the measured locations; calculating orientation and origin of the work object frame of reference from the robot frame of reference based on the measured first, second and third coordinates for the measured locations, where the work object is positioned in the robot cell. The method provides all the necessary data to determine orientation and origin of the actual work object frame of reference relative to the robot frame of reference. The method also enables the robot to perform machine operations accurately at locations on a work object.