Abstract:
Devices and methods for cutting an opening from a workpiece. The apparatus comprises a first emitter and a second emitter, a power of a first laser emitted by the first emitter being smaller than a power of a second laser emitted by the second emitter. The apparatus further comprises a laser head, an image sensor, and a processing unit. The laser head is coupled to the first and second emitters and adapted to move adjacent to a first side of a workpiece and direct the first and second lasers onto the first side. The image sensor is configured to receive the first laser to form an image of the first laser. The processing unit is configured to determine a difference between a profile of the image of the first laser and a predetermined profile of an opening to be cut from the workpiece.
Abstract:
A method is disclosed for calibrating a tool center point of tool for an industrial robot system. The method can include moving a first part of said tool and a cross beam sensor by said industrial robot; recording a first posture and a second posture of said industrial robot during the interruptions of a first beam and a second beam of a cross beam sensor; moving a second part of said tool and said cross beam sensor by said industrial robot; recording a third posture and a fourth posture of said industrial robot; calculating the tool orientation in consideration of said first posture, second posture, third posture and fourth posture of said industrial robot; and moving said tool and said cross beam sensor by said industrial robot so that said tool center point of said tool interrupts said crossing point of said cross beam sensor.
Abstract:
A method is disclosed for calibrating a tool centre point of tool for an industrial robot system. The method can include moving a first part of said tool and a cross beam sensor by said industrial robot; recording a first posture and a second posture of said industrial robot during the interruptions of a first beam and a second beam of a cross beam sensor; moving a second part of said tool and said cross beam sensor by said industrial robot; recording a third posture and a fourth posture of said industrial robot; calculating the tool orientation in consideration of said first posture, second posture, third posture and fourth posture of said industrial robot; and moving said tool and said cross beam sensor by said industrial robot so that said tool centre point of said tool interrupts said crossing point of said cross beam sensor.
Abstract:
Disclosed are systems and methods to provide a method for calibrating a touchscreen coordinate system of a touchscreen with an industrial robot coordinate system of an industrial robot for industrial robot commissioning and industrial robot system and control system using the same. In one form the systems and methods include attaching an end effector to the industrial robot; (a) moving the industrial robot in a compliant way until a stylus of the end effector touches a point on the touchscreen; (b) recording a position of the stylus of the end effector in the industrial robot coordinate system when it touches the point of the touchscreen; (c) recording a position of the touch point on the touchscreen in the touchscreen coordinate system; and calculating a relation between the industrial robot coordinate system and the touchscreen coordinate system based on the at least three positions of the end effector stylus and the at least three positions of the touch points.
Abstract:
Disclosed are systems and methods to provide a method for calibrating a touchscreen coordinate system of a touchscreen with an industrial robot coordinate system of an industrial robot for industrial robot commissioning and industrial robot system and control system using the same. In one form the systems and methods include attaching an end effector to the industrial robot; (a) moving the industrial robot in a compliant way until a stylus of the end effector touches a point on the touchscreen, (b) recording a position of the stylus of the end effector in the industrial robot coordinate system when it touches the point of the touchscreen; (c) recording a position of the touch point on the touchscreen in the touchscreen coordinate system; and calculating a relation between the industrial robot coordinate system and the touchscreen coordinate system based on the at least three positions of the end effector stylus and the at least three positions of the touch points.
Abstract:
A method for calibration of work piece mounted in a predetermined manner to a work object and a robot system using the same. The work object has a first surface, a second surface and a third surface, and wherein the work object frame of reference is defined by a first coordinate line, a second coordinate line, and a third coordinate line at intersections of the first surface, the second surface and the third surface converging on a point. The method includes: touching a first number of locations on the first surface of the work object positioned by the robot touch probe to measure their actual locations on the first surface in the robot frame of reference, and storing the measured first coordinates for the measured locations; touching a second number of locations on the second surface of the work object positioned by the robot touch probe to measure their actual locations on the second surface in the robot frame of reference, and storing the measured second coordinates for the measured locations; touching a third number of locations on the third surface of the work object positioned by the robot touch probe to measure their actual locations on the third surface in the robot frame of reference, and storing the measured third coordinates for the measured locations; calculating orientation and origin of the work object frame of reference from the robot frame of reference based on the measured first, second and third coordinates for the measured locations, where the work object is positioned in the robot cell. The method provides all the necessary data to determine orientation and origin of the actual work object frame of reference relative to the robot frame of reference. The method also enables the robot to perform machine operations accurately at locations on a work object.
Abstract:
A method for calibration of work piece mounted in a predetermined manner to a work object and a robot system using the same. The work object has a first surface, a second surface and a third surface, and wherein the work object frame of reference is defined by a first coordinate line, a second coordinate line, and a third coordinate line at intersections of the first surface, the second surface and the third surface converging on a point. The method includes: touching a first number of locations on the first surface of the work object positioned by the robot touch probe to measure their actual locations on the first surface in the robot frame of reference, and storing the measured first coordinates for the measured locations; touching a second number of locations on the second surface of the work object positioned by the robot touch probe to measure their actual locations on the second surface in the robot frame of reference, and storing the measured second coordinates for the measured locations; touching a third number of locations on the third surface of the work object positioned by the robot touch probe to measure their actual locations on the third surface in the robot frame of reference, and storing the measured third coordinates for the measured locations; calculating orientation and origin of the work object frame of reference from the robot frame of reference based on the measured first, second and third coordinates for the measured locations, where the work object is positioned in the robot cell. The method provides all the necessary data to determine orientation and origin of the actual work object frame of reference relative to the robot frame of reference. The method also enables the robot to perform machine operations accurately at locations on a work object.
Abstract:
Disclosed are systems and methods to provide a method for calibrating a touchscreen coordinate system of a touchscreen with an industrial robot coordinate system of an industrial robot for industrial robot commissioning and industrial robot system and control system using the same. In one form the systems and methods include attaching an end effector to the industrial robot; (a) moving the industrial robot in a compliant way until a stylus of the end effector touches a point on the touchscreen; (b) recording a position of the stylus of the end effector in the industrial robot coordinate system when it touches the point of the touchscreen; (c) recording a position of the touch point on the touchscreen in the touchscreen coordinate system; and calculating a relation between the industrial robot coordinate system and the touchscreen coordinate system based on the at least three positions of the end effector stylus and the at least three positions of the touch points.
Abstract:
Disclosed are systems and methods to provide a method for calibrating a touchscreen coordinate system of a touchscreen with an industrial robot coordinate system of an industrial robot for industrial robot commissioning and industrial robot system and control system using the same. In one form the systems and methods include attaching an end effector to the industrial robot; (a) moving the industrial robot in a compliant way until a stylus of the end effector touches a point on the touchscreen; (b) recording a position of the stylus of the end effector in the industrial robot coordinate system when it touches the point of the touchscreen; (c) recording a position of the touch point on the touchscreen in the touchscreen coordinate system; and calculating a relation between the industrial robot coordinate system and the touchscreen coordinate system based on the at least three positions of the end effector stylus and the at least three positions of the touch points.