Abstract:
A synchronous machine system comprising a synchronous motor including a stator, stator winding, rotor, and field winding; an AC power supply circuit structured to transmit current to or from the stator winding of the synchronous motor at a controlled frequency and transmit current to or from a power source at a controlled frequency; a DC exciter unit structured to receive power from a power source, convert the received power to DC power at a desired voltage, and supply the converted power across a DC bus to the field winding of the synchronous motor; and an energy storage circuit coupled to the DC bus of the DC exciter unit having at least one ultracapacitor, and structured to receive power from a power source, to charge the ultracapacitor, and to provide power to the field winding of the synchronous motor following a power failure.
Abstract:
One exemplary embodiment is method of operating an electrically excited synchronous machine (EESM) system. The system includes a converter operatively coupled with one or more stator windings, an exciter operatively coupled with one or more field windings, a controller operatively coupled with the converter and the exciter, and a power supply operatively coupled with the converter and the exciter. The controller determines whether a power supply fault condition exists and whether EESM system is operating in a motor mode or a generator mode. If the power supply fault condition exists and the EESM system is operating in the motor mode, entering one of a motor ride through control mode and a motor controlled braking control mode If the power supply fault condition exists and the EESM system is operating in the generator mode, entering one of a generator ride through control mode and a generator controlled braking control mode.
Abstract:
One exemplary embodiment is method of operating an electrically excited synchronous machine (EESM) system. The system includes a converter operatively coupled with one or more stator windings, an exciter operatively coupled with one or more field windings, a controller operatively coupled with the converter and the exciter, and a power supply operatively coupled with the converter and the exciter. The controller determines whether a power supply fault condition exists and whether EESM system is operating in a motor mode or a generator mode. If the power supply fault condition exists and the EESM system is operating in the motor mode, entering one of a motor ride through control mode and a motor controlled braking control mode If the power supply fault condition exists and the EESM system is operating in the generator mode, entering one of a generator ride through control mode and a generator controlled braking control mode.