Abstract:
A system and method for removing noise from images are disclosed herein. An exemplary system includes an edge-detection-based adaptive filter that identifies edge pixels and non-edge pixels in an image and selects a filtering technique for at least one non-edge pixel based on a comparison of the at least one non-edge pixel to a neighboring pixel region, wherein such comparison indicates whether the at least one non-edge pixel is a result of low-light noise.
Abstract:
A system and method for removing noise from images are disclosed herein. An exemplary system includes an edge-detection-based adaptive filter that identifies edge pixels and non-edge pixels in an image and selects a filtering technique for at least one non-edge pixel based on a comparison of the at least one non-edge pixel to a neighboring pixel region, wherein such comparison indicates whether the at least one non-edge pixel is a result of low-light noise.
Abstract:
One factor in limiting the speed of conventional implementations of mixture models is that the algorithm involves many decisions where different operations are fetched and performed depending on the outcome of the decisions. These decisions cause flushing of the pipeline, and thus prevent the realization of a highly parallel pipeline in a processor. Without parallelism, the throughput of the pipeline in the processor, i.e., the ability to process many samples of the digital input at a time, is limited. To alleviate this issue, implementation of the mixture model is reformulated, among other things, by embedding decisions into the process flow as multiplicative factors. The resulting implementation alleviates the need to use if-else statements for the decisions and reduces the number of times the pipeline has to be flushed. The implementation enables a pipeline with a higher degree of parallelism and thereby increases throughput and speed of the implementation.