Abstract:
Systems and methods for improving display image quality on electronic displays are provided. One embodiment of an electronic display includes display pixels that share a common electrode. Each of the display pixels includes a first conductive path electrically coupled between a pixel electrode and a data line, in which the first conductive path only enables the data line to charge the pixel electrode; and a second conductive path electrically coupled between the pixel electrode and the data line in parallel with the first conductive path, in which the second conductive path enables the data line to discharge the pixel electrode such that discharge rate of the pixel electrode is approximately equal to charge rate of the pixel electrode. Additionally, the embodiment includes a touch pixel that detects occurrence and position of a touch on a screen of the electronic display using the first common electrode.
Abstract:
A display device may include rows of pixels that display image data on a display and a circuit. The circuit may receive pixel data value of image data for a pixel in a first row of the rows of pixels, determine a weight factor to apply to the pixel data value based on a position of the first row with respect to the other rows, such that each row is associated with a current-resistance (IR) drop across the display. The weight factor is determined based on a respective IR drop associated with the first row. The circuit may also generate a weighted pixel data value based on the weight factor and the pixel data value and send the weighted pixel data value to a display driver circuit that renders the image data via the display.
Abstract:
Methods and devices useful in discharging an aberrant charge on the VCOM of an electronic display and harvesting energy from the VCOM of the electronic display are provided. By way of example, a method may include supplying an activation signal to an active switching device of an electronic display. The active switching device is configured to discharge an aberrant charge on a common electrode of the electronic display. The method further includes discharging the aberrant charge by way of the active switching device. Discharging the aberrant charge comprises preventing a possible occurrence of image artifacts from becoming apparent on the electronic display.
Abstract:
Systems and methods for improving display image quality on electronic displays are provided. One embodiment of an electronic display includes display pixels that share a common electrode. Each of the display pixels includes a first conductive path electrically coupled between a pixel electrode and a data line, in which the first conductive path only enables the data line to charge the pixel electrode; and a second conductive path electrically coupled between the pixel electrode and the data line in parallel with the first conductive path, in which the second conductive path enables the data line to discharge the pixel electrode such that discharge rate of the pixel electrode is approximately equal to charge rate of the pixel electrode. Additionally, the embodiment includes a touch pixel that detects occurrence and position of a touch on a screen of the electronic display using the first common electrode.