Abstract:
A method of treating vascular disease in a patient is disclosed that comprises deploying a bioabsorbable polymer scaffold composed of a plurality of struts at a stenotic segment of an artery of a patient, wherein after the scaffold supports the segment at an increased diameter for a period of time the polymer degrades and is progressively replaced by de novo formation of malleable provisional matrix comprising proteoglycan, wherein as the scaffold becomes more malleable and becomes disconnected as it degrades, wherein following coverage of the struts by a neointima layer and loss of mechanical support provided by the scaffold, the scaffold is pulled outward by positive remodeling of the vessel wall of the scaffolded segment.
Abstract:
A method of treating vascular disease in a patient is disclosed that comprises deploying a bioabsorbable polymer scaffold composed of a plurality of struts at a stenotic segment of an artery of a patient, wherein after the scaffold supports the segment at an increased diameter for a period of time the polymer degrades and is progressively replaced by de novo formation of malleable provisional matrix comprising proteoglycan, wherein as the scaffold becomes more malleable and becomes disconnected as it degrades, wherein following coverage of the struts by a neointima layer and loss of mechanical support provided by the scaffold, the scaffold is pulled outward by positive remodeling of the vessel wall of the scaffolded segment.