Abstract:
In one embodiment, a paddle-style lead for implantation in the epidural space through an insertion tool, the paddle-style lead comprises: a paddle structure that comprises: (i) a frame of rigid material, the frame comprising a spring member adapted to bias the frame to assume a first width and a first length, the frame being adapted to elongate to assume a second width and a second length under application of a compressive force; and (ii) elastic material disposed across an interior surface area defined the frame, wherein a plurality of electrodes and a plurality of electrical traces are provided on the elastic material, wherein the plurality of electrical traces are electrically coupled to a plurality of lead conductors and the plurality of electrodes; wherein the plurality of electrical traces comprises a plurality of alternating curves that elongate when the elastic material is stretched.
Abstract:
In one embodiment, a stimulation lead for applying electrical pulses to tissue of a patient, the stimulation lead comprises: a plurality of electrodes on a first end of the lead body; a plurality of terminals on a second end of the lead body; a lead body comprising a flex film component disposed within insulative material, wherein (i) the flex film component comprises a plurality of electrical traces, (ii) the plurality of electrical traces electrically couple the plurality of electrodes with the plurality of terminals, and (iii) the flex film component comprises a plurality of bends along a substantial length of the lead body; wherein the stimulation lead is adapted to elastically elongate under application of stretching forces to the lead body without disconnection of the electrical connections between the plurality of electrodes and the plurality of terminals through the electrical traces of the flex film component.
Abstract:
In one embodiment, a method, of fabricating a stimulation lead for stimulating tissue of a patient, comprises: providing a lead body, the lead body comprising a plurality of conductors embedded within insulating material; providing a plurality of terminals; electrically coupling the plurality of terminals with the plurality of conductors; providing a plurality of electrodes, the plurality of electrodes comprising a plurality of substantially continuous longitudinal trenches on a surface of the electrodes, the electrodes comprising areas of reflow material forming microstructures substantially continuously along walls of the longitudinal trenches; and electrically coupling the plurality of electrodes with the plurality of conductors.
Abstract:
In one embodiment, a stimulation lead for applying electrical pulses to tissue of a patient, the stimulation lead comprises: a plurality of electrodes on a first end of the lead body; a plurality of terminals on a second end of the lead body; a lead body comprising a flex film component disposed within insulative material, wherein (i) the flex film component comprises a plurality of electrical traces, (ii) the plurality of electrical traces electrically couple the plurality of electrodes with the plurality of terminals, and (iii) the flex film component comprises a plurality of bends along a substantial length of the lead body; wherein the stimulation lead is adapted to elastically elongate under application of stretching forces to the lead body without disconnection of the electrical connections between the plurality of electrodes and the plurality of terminals through the electrical traces of the flex film component.
Abstract:
In one embodiment, a paddle-style lead for implantation in the epidural space through an insertion tool, the paddle-style lead comprises: a paddle structure that comprises: (i) a frame of rigid material, the frame comprising a spring member adapted to bias the frame to assume a first width and a first length, the frame being adapted to elongate to assume a second width and a second length under application of a compressive force; and (ii) elastic material disposed across an interior surface area defined the frame, wherein a plurality of electrodes and a plurality of electrical traces are provided on the elastic material, wherein the plurality of electrical traces are electrically coupled to a plurality of lead conductors and the plurality of electrodes; wherein the plurality of electrical traces comprises a plurality of alternating curves that elongate when the elastic material is stretched.
Abstract:
In one embodiment, a method of fabricating an implantable stimulation paddle comprises: providing a sheet of conductive material coupled to a first insulative layer; laser removing portions of the conductive material to form a pattern of conductive material, the pattern of conductive material including a plurality of isolated metal traces; providing a second insulative layer over the pattern of conductive material so that the pattern of conductive material is interposed between the first and second insulative layers; and exposing portions of the metal traces to form electrodes on the paddle for delivering electrical stimulation.
Abstract:
In one embodiment, a method of fabricating an implantable stimulation paddle comprises: providing a sheet of conductive material coupled to a first insulative layer; laser removing portions of the conductive material to form a pattern of conductive material, the pattern of conductive material including a plurality of isolated metal traces; providing a second insulative layer over the pattern of conductive material so that the pattern of conductive material is interposed between the first and second insulative layers; and exposing portions of the metal traces to form electrodes on the paddle for delivering electrical stimulation.