Abstract:
A system and method for determining the position of a moveable barrier relative to the fully open position and fully closed position. The invention utilizes in a preferred embodiment a geo-magnetic sensor to determine the extent to which the barrier has traveled from reference position of fully open or fully closed to some intermediate point. A multi-axis sensor provides an output which changes during the barrier's excursion relative to each of the respective axes so that direction or tilt may be readily known in between the closed and open positions. Operation of the gate or barrier may be more efficiently controlled when its precise location between open and closed is known.
Abstract:
A system and method for detecting a tampering of a moveable gate barrier. A singular or a plurality of vibration sensors are strategically positioned on the gate and a gate operator to detect tampering while the gate is closed. If the sensor outputs exceed preset thresholds of duration and/or magnitude, an alarm is activated to alert personnel to an attempted breach of the gate barrier.
Abstract:
A lock module housing containing the components of a preferred embodiment is physically mounted to the rear of a gate drive motor of an automatic gate system. A solenoid front shaft, when the solenoid is de-energized, is pushed into a sprocket attached to the drive motor, thus preventing the motor shaft from turning. To release the drive motor, the solenoid is energized. The solenoid rear shaft contacts a limit switch to indicate to the controller that the drive motor is indeed unlocked. When the controller is about to move the gate, energizing the solenoid retracts the shaft and allows normal operation of the gate control system. At the end of the gate cycle, the solenoid is de-energized and the drive motor is once again locked. In the case of a manual release, a key lock is turned from a first position to a second position to unlock the motor shaft. A mechanical linkage arm attached to the key lock pulls the solenoid shaft to its energized position, which in turn contacts the limit switch. The gate can then be back driven manually.
Abstract:
A security gate operating system, is disclosed which comprises an electrically powered motor; a thermally controlled circuit breaker set to remove power to the motor when the motor reaches a preselected threshold temperature; a cooling fan associated with the motor and selectively powered to provide auxiliary cooling to the motor to prevent the motor from overheating; and a cooling fan motor controller, adapted to selectively supply power to the cooling fan when the motor is approaching the threshold temperature. The apparatus can further comprise the cooling fan controller being a thermo-static switch set to close at a preselected temperature below the threshold temperature, or a programmed microprocessor/microcontroller programmed to provide power to the cooling fan at a preselected temperature below the threshold temperature or when the temperature of the motor is about to reach the preselected temperature.
Abstract:
A system and method for detecting an object or obstruction in the path of a moveable barrier or automatic gate and allowing a coupled controller to determine corrective action prior to the moveable barrier coming in physical contact with such object or obstruction. A plurality of sensors in a physical array is used to detect such objects in the path of a barrier as it moves from closed to open and vice versa. The output of each respective sensor is compared to all of the others. In the preferred embodiment, if all of the sensor outputs are the same, it is assumed that there is no obstruction. However, if the output of any one sensor differs from the output of another sensor, it is assumed that there is an obstruction and the gate is either stopped or reversed before contact is made.
Abstract:
A system and method for determining the position of a moveable barrier relative to the fully open position and fully closed position. The invention utilizes in a preferred embodiment a geo-magnetic sensor to determine the extent to which the barrier has traveled from reference position of fully open or fully closed to some intermediate point. A multi-axis sensor provides an output which changes during the barrier's excursion relative to each of the respective axes so that direction or tilt may be readily known in between the closed and open positions. Operation of the gate or barrier may be more efficiently controlled when its precise location between open and closed is known.
Abstract:
A wireless telephone interface for use with the control operator of an automatic gate system. A device utilized as a telephone extension device where a user can remotely call the device and by entering a code, can wirelessly command the gate operator to initiate a movement of the gate to either an open or closed position. This system is designed as a direct telephone interface without the complexity of a telephone entry system. The key benefit is a programmable hold open time “per command”.
Abstract:
A method and apparatus for moving a gate a distance in a predetermined period of time. In one embodiment the current load for an electric motor to move a gate is first measured to determine whether the gate's motion is being hindered or helped. A microprocessor then controls voltage supplied to the motor to enhance or retard the evolved power of the motor according to the load and the predetermined time.
Abstract:
An access control system and one or more remote user interfaces that communicate with one another via nine bit messages are able to wirelessly communicate with one another via conversion of such nine bit messages into multiple corresponding eight bit message. In a preferred approach, information from the original nine bit message that indicates a message type is segregated to one such eight bit message.