摘要:
A method, a system and a computer program product for selecting a primary controller for a server system based on the services offered by each controller. A primary controller designator (PCD) utility determines the relative importance of a controller based upon the services provided by the controller and the weighted importance assigned to these services. The PCD utility classifies the services provided by a system-controller according to the following: (1) the number of OS partitions a system-controller is able to communicate with; and (2) the number of hardware devices that a controller has access to. The importance of the services is determined by the host OS partition information and the degree of importance of a partition that utilizes/requires the particular service(s). The PCD utility designates a controller as a “Primary” if the designated “Primary” is capable of providing services that are required for the most important OS partitions, according to the classification of controller services.
摘要:
A method, system, and computer usable program product for managing multi-node multi-version systems are provided in the illustrative embodiments. A process associates a version identifier with a first version of data available at a first node in the multi-node multi-version system. The version identifier corresponds to the first version of the data. The data includes an update. The process sends the data and the associated version identifier to a second node without learning a second version of data available at the second node. In one embodiment, the first version of data may be a subset of the second version of data. In another embodiment the second version of data may be a subset of the first version of data. The process repeats the sending for each update at the first node.
摘要:
A method, system, and computer usable program product for managing multi-node multi-version systems are provided in the illustrative embodiments. A process associates a version identifier with a first version of data available at a first node in the multi-node multi-version system. The version identifier corresponds to the first version of the data. The data includes an update. The process sends the data and the associated version identifier to a second node without learning a second version of data available at the second node. In one embodiment, the first version of data may be a subset of the second version of data. In another embodiment the second version of data may be a subset of the first version of data. The process repeats the sending for each update at the first node.
摘要:
A method, system, and computer usable program product for updating firmware without disrupting service are provided in the illustrative embodiments. An updated firmware code is sent to a first firmware component and a second firmware component. The first firmware component is a primary firmware component and the second firmware component is a backup firmware component in a redundant firmware configuration. The updated firmware code is installed in second firmware component. The updated firmware code is activated in a third firmware component. The third firmware component is in communication with the first firmware component. A fail-over from the first firmware component to the second firmware component is performed such that a user communicating with the data processing system and receiving a service using the first firmware component continues to receive the service using the second firmware component without a disruption in the service.
摘要:
A method, computer program product, and system for the staged integration of a remote entity and the simultaneous publishing of services is provided. The integration of the distributed remote entities is broken into five stages, with appropriate events published after each stage. Each of the five stages is initiated only if the previous stage completed successfully. The first stage is the initiate discovery phase. The first event is the discovery start event. The second stage is the discovery completed phase. The second event is the discovery completed event. The third stage is the basic software services verified phase. The third event is the basic software verification completed event. The fourth stage is the basic hardware services verified phase. The fourth event is the basic hardware verification completed event. The fifth stage is the extended hardware services verified phase. The fifth event is the full integration of disturbed entity event.
摘要:
A method, system, and computer usable program product for updating firmware without disrupting service are provided in the illustrative embodiments. An updated firmware code is sent to a first firmware component and a second firmware component. The first firmware component is a primary firmware component and the second firmware component is a backup firmware component in a redundant firmware configuration. The updated firmware code is installed in second firmware component. The updated firmware code is activated in a third firmware component. The third firmware component is in communication with the first firmware component. A fail-over from the first firmware component to the second firmware component is performed such that a user communicating with the data processing system and receiving a service using the first firmware component continues to receive the service using the second firmware component without a disruption in the service.
摘要:
A method for enabling a Node Controller (NC), which claims a duplicate or invalid service processor Node Controller Identification (NCID) in a distributed service processor system, to be integrated into the system includes reading an NCID by the NC after the NC is booted, saving the NCID into a non-volatile storage and broadcasting an NC Present Message (NPM) to a System Controller (SC) repeatedly until the SC initiates communication, updating the NCID for the NC in the non-volatile storage when the NC receives an NCID change message from the SC and rating any future NPM as a new NCID, and checking a record of a new NC when the SC receives the NPM from the NC. If the SC has a record of a recorded NC with the same NCID as the new NC, then the SC checks its role as a primary SC. If the SC does not have the record of the recorded NC with the same NCID as the new NC, then the SC checks validity of the NCID.
摘要:
A method for enabling a Node Controller (NC), which claims a duplicate or invalid service processor Node Controller Identification (NCID) in a distributed service processor system, to be integrated into the system includes reading an NCID by the NC after the NC is booted, saving the NCID into a non-volatile storage and broadcasting an NC Present Message (NPM) to a Service Processor (SC) repeatedly until the SC initiates communication, updating the NCID for the NC in the non-volatile storage when the NC receives an NCID change message from the SC and rating any future NPM as a new NCID, and checking a record of an new NC in the non-volatile storage when the SC receives the NPM from the NC. If the SC has a record of a recorded NC with the same NCID as the new NC, then the SC checks its role as a primary SC. If the SC does not have the record of the recorded NC with the same NCID as the new NC, then the SC checks validity of the NCID.
摘要:
A method, computer program product, and system for the staged integration of a remote entity and the simultaneous publishing of services is provided. The integration of the distributed remote entities is broken into five stages, with appropriate events published after each stage. Each of the five stages is initiated only if the previous stage completed successfully. The first stage is the initiate discovery phase. The first event is the discovery start event. The second stage is the discovery completed phase. The second event is the discovery completed event. The third stage is the basic software services verified phase. The third event is the basic software verification completed event. The fourth stage is the basic hardware services verified phase. The fourth event is the basic hardware verification completed event. The fifth stage is the extended hardware services verified phase. The fifth event is the full integration of disturbed entity event.
摘要:
A computer implemented method, a tangible computer readable medium, and a data processing system intelligently propagate link status information received by a blade server to the various ports of an embedded multi-port switch. The link status of a switch port in an external switch module can be communicated to the operating systems of individual blade servers that are affected by that link status. When an external switch module is unplugged from a server blade chassis, the bus controller broadcasts a link down event, such as a link down interrupt, to the individual server blades where it is received by the embedded multi-port switch for those server blades. The embedded multi-port switch translates the link down interrupt into a hardware link down event, and forwards the hardware link down event to the other elements connected to the embedded multi-port switch.