Abstract:
Glassware forming apparatus includes a first arm for supporting a first neck ring and a second arm for supporting a first blow head. The first and second arms are supported from a vertical column for projection along its axis and for independent pivotal movement about the axis. The apparatus also includes a parison mold and two blow molds. Each of the blow molds is divided into two portions, the portions of each mold being joined at a hinge. The axis of each hinge extends generally parallel to the column axis. Apparatus is provided for opening and closing the molds, and for pivoting and projecting the first and second arms to convey glassware blanks supported by the neck ring alternately to the two blow molds from the parison mold, and to move the blow head between the two blow molds to blow the glassware blanks into articles of glassware. The illustrated apparatus for pivoting and projecting each of the arms along the common axis includes a pinion gear attached to a shaft, the other end of which is attached to one of the arms. First and second racks alternately engage the pinion gear. A frame supports the racks for selective shifting movement. The frame itself is supported for movement longitudinally of the racks to turn the pinion gear when one or the other of the racks is in engagement with the pinion gear. Piston-and-cylinder arrangements are provided for longitudinally controllably moving the frame support apparatus and for controllably shifting the frame selectively to engage the pinion gear with one of the first and second racks. The frame is preferably pivotally mounted on the frame support and has a first position in which the first rack engages the pinion gear and a second position in which the second rack engages the pinion gear. The method of the present invention comprises the steps of forming blanks in the parison mold and alternately depositing the blanks in the blow molds to be formed into glassware.
Abstract:
An engine which utilizes gas and compressed air to provide propulsive force. A compressor and a turbo are connected to the engine to provide compressed air for driving the engine to either supplement or replace the gas.
Abstract:
Glassware forming apparatus includes a turret mounted for rotation about, and projection along, a vertical axis. First, second, third and fourth arms are rigidly mounted on said turret to extend horizontally and radially outwardly. The first arm supports a first neck ring. The second arm supports a second neck ring. The third arm supports a first blow head. The fourth arm supports a second blow head. The apparatus further includes a parison mold and first and second blow molds. Each of the blow molds is divided into two mold portions joined along a vertical hinge. The axes of the blow mold hinges extend generally parallel to the turret axis. Apparatus is provided for opening and closing the molds, for pivoting the turret about its axis and for projecting the turret along its axis to position the first and second neck rings alternately in engagement with the parison mold, to convey blanks supported from the first and second neck rings to the first and second blow molds, respectively, and to position the first and second blow heads in engagement with blanks conveyed to the first and second blow molds, respectively. The method of the present invention involves moving the arms to form blanks on the neck rings in the parison mold, to deposit the blanks in the blow molds, to engage the blanks in the blow molds with the blow heads and to remove the finished glassware to a removal station.
Abstract:
Glassware forming apparatus includes a first arm for supporting a first neck ring and a second arm for supporting a first blow head. The first and second arms are supported from a vertical column for projection along its axis and for independent pivotal movement about the axis. The apparatus also includes a parison mold and two blow molds. Each of the blow molds is divided into two portions, the portions of each mold being joined at a hinge. The axis of each hinge extends generally parallel to the column axis. Apparatus is provided for opening and closing the molds, and for pivoting and projecting the first and second arms to convey glassware blanks supported by the neck ring alternately to the two blow molds from the parison mold, and to move the blow head between the two blow molds to blow the glassware blanks into articles of glassware. The illustrated apparatus for pivoting and projecting each of the arms along the common axis includes a pinion gear attached to a shaft, the other end of which is attached to one of the arms. First and second racks alternately engage the pinion gear. A frame supports the racks for selective shifting movement. The frame itself is supported for movement longitudinally of the racks to turn the pinion gear when one or the other of the racks is in engagement with the pinion gear. Piston-and-cylinder arrangements are provided for longitudinally controllably moving the frame support apparatus and for controllably shifting the frame selectively to engage the pinion gear with one of the first and second racks. The frame is preferably pivotally mounted on the frame support and has a first position in which the first rack engages the pinion gear and a second position in which the second rack engages the pinion gear. The method of the present invention comprises the steps of forming blanks in the parison mold and alternately depositing the blanks in the blow molds to be formed into glassware.
Abstract:
A lehr loader or stacker for use with a conveyor for moving ware serially past the moving apron of a lehr, the loader comprising a frame adjacent the conveyor, and a pair of pusher bars on the frame alongside the conveyor and opposite the lehr apron. The bars are movable alternately transversely across the conveyor to sweep ranks of ware transversely from the conveyor onto the lehr apron for movement thereon through the lehr. The bars are mounted upon the frame for movement through the same general path, each bar being provided by a pair of longitudinally extending bar sections providing a longitudinal space therebetween. The mounting system for each bar includes arms supporting, respectively, the bar sections, one of the arms for each said bar being movable through the space between the bar sections of the other said bar as the bars move through the path.
Abstract:
Glassware forming apparatus includes a parison mold, a blow mold, a pair of neck rings for supporting glassware blanks, first and second invert arms for supporting the neck rings and first and second arbors for supporting the first and second invert arms, respectively. The invert arms support their respective neck rings for movement in a common vertical plane. The axes of the arbors extend generally parallel to one another and generally perpendicular to the common plane. The molds have parallel vertical axes lying in said common vertical plane. Apparatus is provided for shifting the arbors such that their axes move toward and away from one another during an operating cycle. Apparatus is provided for pivoting the arbors about their axes to move the neck rings in invert and revert arcs between the parison mold and the blow mold. The method comprises the steps of moving the neck rings into registry with the parison molds to receive a gob of molten glass to form a blank, inverting the neck rings to support the blanks at a reheat station and then shifting the neck rings to present the blanks for engagement by a blow mold.
Abstract:
Apparatus for transferring parts moving serially along a first conveyor to parallel ranks on a second conveyor comprising a push bar for contacting and transferring the parts, a carriage for supporting the bar and a base for movably supporting the carriage. A first drive apparatus moves the bar from a starting position adjacent the first conveyor toward the second conveyor. A lifting apparatus raises the bar after the articles have been transferred from the first conveyor onto the second conveyor and maintains the bar in a raised position for at least a portion of its return to its starting position. The bar is mounted on a movable mounting apparatus so that the bar can move with respect to the carriage. A second drive apparatus is provided for moving the bar with respect to the carriage, the second drive apparatus including at least one drive arm for moving the bar mounting apparatus. The drive arm has a proximal end pivotally mounted on the carriage for movement about a vertical axis and a distal end pivotally connected to the movable mounting apparatus. The second drive apparatus further includes a portion for driving the drive arm pivotally on the carriage and for moving the carriage relative to the base.
Abstract:
Glassware forming apparatus includes a turret mounted for rotation about, and projection along, a vertical axis. First, second, third and fourth arms are rigidly mounted on said turret to extend horizontally and radially outwardly. The first arm supports a first neck ring. The second arm supports a second neck ring. The third arm supports a first blow head. The fourth arm supports a second blow head. The apparatus further includes a parison mold and first and second blow molds. Each of the blow molds is divided into two mold portions joined along a vertical hinge. The axes of the blow mold hinges extend generally parallel to the turret axis. Apparatus is provided for opening and closing the molds, for pivoting the turret about its axis and for projecting the turret along its axis to position the first and second neck rings alternately in engagement with the parison mold, to convey blanks supported from the first and second neck rings to the first and second blow molds, respectively, and to position the first and second blow heads in engagement with blanks conveyed to the first and second blow molds, respectively. The method of the present invention involves moving the arms to form blanks on the neck rings in the parison mold, to deposit the blanks in the blow molds, to engage the blanks in the blow molds with the blow heads and to remove the finished glassware to a removal station.
Abstract:
Glassware forming apparatus includes a parison mold, a blow mold, a pair of neck rings for supporting glassware blanks, first and second invert arms for supporting the neck rings and first and second arbors for supporting the first and second invert arms, respectively. The invert arms support their respective neck rings for movement in a common vertical plane. The axes of the arbors extend generally parallel to one another and generally perpendicular to the common plane. The molds have parallel vertical axes lying in said common vertical plane. Apparatus is provided for shifting the arbors such that their axes move toward and away from one another during an operating cycle. Apparatus is provided for pivoting the arbors about their axes to move the neck rings in invert and revert arcs between the parison mold and the blow mold. The method comprises the steps of moving the neck rings into registry with the parison molds to receive a gob of molten glass to form a blank, inverting the neck rings to support the blanks at a reheat station and then shifting the neck rings to present the blanks for engagement by a blow mold.
Abstract:
An engine which utilizes gas and compressed air to provide propulsive force. A compressor and a turbo are connected to the engine to provide compressed air for driving the engine to either supplement or replace the gas.