Abstract:
A system and methods to extending the overall display area for a device. At or near the borders of a device, pixel pitch between adjacent pixels may be increased such that overall pixel placement may be provided closer to a border of a display of a device. In one embodiment, pixel drive circuitry may be located in the spacing between adjacent pixels. Additionally, various optical systems and techniques may be utilized to provide an appearance of a lack of a border around the display such as decreasing the size of border pixels, overdriving the border pixels, or utilizing a light pipe on a surface above the border pixels.
Abstract:
Systems, methods, and devices are disclosed for applying concealment of components of an electronic device. In one embodiment, an electronic device may include a component that is disposed behind a display (e.g., a transparent organic light-emitting diode (OLED) display) that is configured to selectively become transparent at certain transparency regions. Additionally, the electronic device includes data processing circuitry configured to determine when an event requesting that the component be exposed occurs. The data processing circuitry may control portions of the display to become transparent, to expose the component upon the occurrence of the event requesting that the component be exposed.
Abstract:
Systems, methods, and devices are disclosed for applying concealment of components of an electronic device. In one embodiment, an electronic device may include a component that is disposed behind a display (e.g., a transparent organic light-emitting diode (OLED) display) that is configured to selectively become transparent at certain transparency regions. Additionally, the electronic device includes data processing circuitry configured to determine when an event requesting that the component be exposed occurs. The data processing circuitry may control portions of the display to become transparent, to expose the component upon the occurrence of the event requesting that the component be exposed.
Abstract:
Systems, methods, and devices are disclosed for applying concealment of components of an electronic device. In one embodiment, an electronic device may include a component that is disposed behind a display (e.g., a transparent organic light-emitting diode (OLED) display) that is configured to selectively become transparent at certain transparency regions. Additionally, the electronic device includes data processing circuitry configured to determine when an event requesting that the component be exposed occurs. The data processing circuitry may control portions of the display to become transparent, to expose the component upon the occurrence of the event requesting that the component be exposed.
Abstract:
Systems, methods, and devices are provided in which photodetectors disposed throughout a display are used to control the display brightness. The photodetectors are to be used for ambient light sensing, proximity sensing, or to compensate for aging OLEDs. In some embodiments, photodiodes are fabricated with OLEDs during the TFT fabrication process. In some embodiments, the photodetectors may be disposed throughout the display in zones containing OLEDs. The photodetectors are used to control the display brightness and color for the OLEDs in areas around each photodetector based on ambient light, aging, and/or nearby objects. A controller makes driving strength adjustments to the OLEDs in each zone independent of other zones. Photodetectors disposed throughout the display may improve proximity sensing and provide additional functionality to the device.
Abstract:
Systems, methods, and devices are provided in which photodetectors disposed throughout a display are used to control the display brightness. The photodetectors are to be used for ambient light sensing, proximity sensing, or to compensate for aging OLEDs. In some embodiments, photodiodes are fabricated with OLEDs during the TFT fabrication process. In some embodiments, the photodetectors may be disposed throughout the display in zones containing OLEDs. The photodetectors are used to control the display brightness and color for the OLEDs in areas around each photodetector based on ambient light, aging, and/or nearby objects. A controller makes driving strength adjustments to the OLEDs in each zone independent of other zones. Photodetectors disposed throughout the display may improve proximity sensing and provide additional functionality to the device.
Abstract:
A system and methods to extending the overall display area for a device. At or near the borders of a device, pixel pitch between adjacent pixels may be increased such that overall pixel placement may be provided closer to a border of a display of a device. In one embodiment, pixel drive circuitry may be located in the spacing between adjacent pixels. Additionally, various optical systems and techniques may be utilized to provide an appearance of a lack of a border around the display such as decreasing the size of border pixels, overdriving the border pixels, or utilizing a light pipe on a surface above the border pixels.
Abstract:
Systems, methods, and devices are provided in which photodetectors disposed throughout a display are used to control the display brightness. The photodetectors are to be used for ambient light sensing, proximity sensing, or to compensate for aging OLEDs. In some embodiments, photodiodes are fabricated with OLEDs during the TFT fabrication process. In some embodiments, the photodetectors may be disposed throughout the display in zones containing OLEDs. The photodetectors are used to control the display brightness and color for the OLEDs in areas around each photodetector based on ambient light, aging, and/or nearby objects. A controller makes driving strength adjustments to the OLEDs in each zone independent of other zones. Photodetectors disposed throughout the display may improve proximity sensing and provide additional functionality to the device.
Abstract:
Systems, methods, and devices are disclosed for applying concealment of components of an electronic device. In one embodiment, an electronic device may include a component that is disposed behind a display (e.g., a transparent organic light-emitting diode (OLED) display) that is configured to selectively become transparent at certain transparency regions. Additionally, the electronic device includes data processing circuitry configured to determine when an event requesting that the component be exposed occurs. The data processing circuitry may control portions of the display to become transparent, to expose the component upon the occurrence of the event requesting that the component be exposed.
Abstract:
A system and methods to extending the overall display area for a device. At or near the borders of a device, pixel pitch between adjacent pixels may be increased such that overall pixel placement may be provided closer to a border of a display of a device. In one embodiment, pixel drive circuitry may be located in the spacing between adjacent pixels. Additionally, various optical systems and techniques may be utilized to provide an appearance of a lack of a border around the display such as decreasing the size of border pixels, overdriving the border pixels, or utilizing a light pipe on a surface above the border pixels.