Architecture for differential drive and sense for touch sensor panel

    公开(公告)号:US12260045B2

    公开(公告)日:2025-03-25

    申请号:US17933808

    申请日:2022-09-20

    Applicant: Apple Inc.

    Abstract: Differential driving and/or differential sensing can reduce noise in the touch and/or display systems of a touch screen. In some examples, the touch sensor panel can include column and row electrodes routed vertically to a first edge of the touch sensor panel. In some examples, a touch sensor panel can be divided into banks. In some examples, the routing traces for rows can be implemented using four routing tracks per column for three banks. In some examples, the arrangement of routing traces within routing tracks can improve optical characteristics and/or reduce routing trace resistances and loading. In some examples, interconnections between routing traces and row electrodes can have a chevron pattern, an S-shape pattern, or a hybrid pattern. In some examples, differential sense routing can reduce cross-coupling within the touch sensor panel. In some examples, staggering differential drive signals can reduce parasitic signal loss.

    Architecture for differential drive and sense touch technology

    公开(公告)号:US11789561B2

    公开(公告)日:2023-10-17

    申请号:US17933783

    申请日:2022-09-20

    Applicant: Apple Inc.

    Abstract: Differential driving and/or sensing can reduce noise in a touch screen. In some examples, the touch screen can include column and row electrodes routed vertically in the active area. In some examples, the touch electrodes and/or routing traces can be implemented using metal mesh in first and second metal layers. To improve optical performance, overlapping portions of metal mesh can be designed to provide an appearance of uniform width/area. In some examples, a dielectric layer can have an increased thickness and/or a reduced dielectric constant, and/or metal mesh in the first metal layer can be flooded with a transparent conductive material. In some examples, routing traces can be disposed beneath touch electrodes and/or metal mesh for touch electrodes can be flooded with a transparent conductive material without flooding metal mesh for routing traces. In some examples, touch electrodes can be interleaved within a touch node to improve differential cancelation.

    Touch screen shield layer with ring and tapping points

    公开(公告)号:US12197679B2

    公开(公告)日:2025-01-14

    申请号:US18312889

    申请日:2023-05-05

    Applicant: Apple Inc.

    Abstract: Differential driving and/or sensing can reduce noise in a touch screen. In some examples, the touch electrodes and/or routing traces can be implemented using metal mesh in first and second metal layers. To mitigate electrical interference at the touch screen from a display, a display-noise shield or sensor can be provided between the display and the touch screen. In some examples, a shield can minimize a noise contribution from the display to signals generated at the touch screen. In other examples, a sensor can enable a differential read out of signals at the touch screen that subtracts a noise component measured by the sensor. Forming the shield or sensor, and the touch screen over the display using an on-cell process can improve touch screen performance and yield. The shield can be connected to a conductive ring and flex circuit via tapping points in a stackup separate from a display stackup.

Patent Agency Ranking